INTRODUCTION

This booklet is dedicated to the memory of Alan E. Lindsay, MD (1923-1987) master teacher of electrocardiography, friend, mentor, and colleague. Many of the excellent ECG tracings illustrated in this learning program are from Dr. Lindsay's personal collection of ECG treasures. For many years these ECG's have been used in the training of medical students, nurses, housestaff physicians, cardiology fellows, and practicing physicians in Salt Lake City, Utah as well as at many regional and national medical meetings.
It is an honor to be able to provide this booklet as well as an interactive ECG website on the Internet in recognition of Dr. Lindsay's great love for teaching and for electrocardiography: http://ecg.utah.edu This document and the ECG website offer an introduction to clinical electrocardiography.

ECG terminology and diagnostic criteria often vary from book to book and from one teacher to another. In this document an attempt has been made to conform to standardized terminology and criteria, although new diagnostic concepts derived from the recent ECG literature have been included in some of the sections. Finally, it is important to recognize that the mastery of ECG interpretation, one of the most useful clinical tools in medicine, can only occur if one acquires considerable experience in reading ECG's and correlating the specific ECG findings with the pathophysiology and clinical status of the patient.

The sections in this booklet are organized in the same order as the recommended step-wise approach to ECG interpretation outlined in Section 2 (p7). Beginning students should first go through the sections in the order in which they are presented. Others may choose to explore topics of interest in any order they wish. It is hoped that all students will be left with some of the love of electrocardiography shared by Dr. Lindsay.

TABLE OF CONTENTS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The Standard 12 Lead ECG (p. 4)</td>
<td>7. Atrial Enlargement (p. 55)</td>
</tr>
<tr>
<td>2. A “Method” of ECG Interpretation (p. 7)</td>
<td>8. Ventricular Hypertrophy (p. 57)</td>
</tr>
<tr>
<td>3. Characteristics of the Normal ECG (p. 12)</td>
<td>9. Myocardial Infarction (p. 61)</td>
</tr>
<tr>
<td>4. ECG Measurement Abnormalities (p. 14)</td>
<td>10. ST Segment Abnormalities (p. 73)</td>
</tr>
<tr>
<td>5. ECG Rhythm Abnormalities (p. 17)</td>
<td>11. T Wave Abnormalities (p. 77)</td>
</tr>
<tr>
<td>6. ECG Conduction Abnormalities (p. 46)</td>
<td>12. U Wave Abnormalities (p. 82)</td>
</tr>
</tbody>
</table>

Basic Competency in Electrocardiography
(Modified from: ACC/AHA Clinical Competence Statement, JACC 2001;38:2091)

In 2001 a joint committee of the American College of Cardiology and the American Heart Association published a list of ECG diagnoses considered to be important for developing basic competency in ECG interpretation. This list is illustrated on the following page and is also illustrated on the website with links to examples or illustrations of the specific ECG diagnosis. Students of electrocardiography are encouraged to study this list and become familiar with the ECG recognition of these diagnoses. Most of the diagnoses are illustrated in this document.

Basic Competency in Electrocardiography
NORMAL TRACING
- Normal ECG

TECHNICAL PROBLEM
- Lead misplaced
- Artifact

SINUS RHYTHMS/ARRHYTHMIAS
- Sinus rhythm
- Sinus tachycardia
- Sinus bradycardia
- Sinus Arrhythmia
- Sinus arrest or pause
- Sinoatrial block, type I
- Sinoatrial block, type II

OTHER SV ARRHYTHMIAS
- PAC's (nonconducted)
- PAC's (conducted normally)
- PAC's (conducted with aberration)
- Ectopic atrial rhythm or tachycardia (unifocal)
- Multifocal atrial rhythm or tachycardia
- Atrial fibrillation
- Atrial flutter
- Junctional premature
- Junctional escapes or rhythms
- Accelerated Junctional rhythms
- Junctional tachycardia
- Paroxysmal supraventricular tachycardia

VENTRICULAR ARRHYTHMIAS
- PVC's
- Ventricular escapes or rhythm
- Accelerated ventricular rhythm
- Ventricular tachycardia (uniform)
- Ventricular tachycardia (polymorphous or torsades)
- Ventricular fibrillation

AV CONDUCTION
- 1° degree AV block
- Type I 2° degree AV block (Wenckebach)
- Type II 2° degree AV block (Mobitz)
- AV block, advanced (high grade)
- 3° degree AV block (junctional escape rhythm)
- 3° degree AV block (ventricular escape rhythm)
- AV dissociation (default)
- AV dissociation (usurpation)
- AV dissociation (AV block)

INTRAVENTRICULAR CONDUCTION
- Complete LBBB, fixed or intermittent
- Incomplete LBBB
- Complete RBBB, fixed or intermittent
- Incomplete RBBB
- Left anterior fascicular block (LAFB)
- Left posterior fascicular block (LPFB)
- Nonspecific IV conduction delay (IVCD)
- WPW preexcitation pattern

QRS AXIS AND VOLTAGE
- Right axis deviation (+90 to +180)
- Left axis deviation (-90 to -180)
- Bizarre axis (-90 to -180)
- Indeterminate axis
- Low voltage frontal plane (<0.5 mV)
- Low voltage precordial (<1.0 mV)

HYPERTROPHY/ENLARGEMENTS
- Left atrial enlargement
- Right atrial enlargement
- Bialtrial enlargement
- Left ventricular hypertrophy
- Right ventricular hypertrophy
- Biventricular hypertrophy

ST-T, AND U ABNORMALITIES
- Early repolarization (normal variant)
- Nonspecific ST-T abnormalities
- ST elevation (transmural injury)
- ST elevation (pericarditis pattern)
- Symmetrical T wave inversion
- Hyperacute T waves
- Prominent upright U waves
- U wave inversion
- Prolonged QT interval

MI PATTERNS (acute, recent, old)
- Interior MI
- Inferoposterior MI
- Inferoposterolateral MI
- Posterior MI
- Anteroseptal MI
- Anterior MI
- Anterolateral MI
- Extensive anterior MI
- High lateral MI
- Non Q-wave MI
- Right ventricular MI

CLINICAL DISORDERS
- Chronic pulmonary disease pattern
- Suggests hypokalemia
- Suggests hyperkalemia
- Suggests hypocalcemia
- Suggests hypercalcemia
- Suggests digoxin effect
- Suggests digoxin toxicity
- Suggests CNS disease

PACE MAKER ECG
- Atrial-paced rhythm
- Ventricular paced rhythm
- AV sequential paced rhythm
- Failure to capture (atrial or ventricular)
- Failure to inhibit (atrial or ventricular)
- Failure to pace (atrial or ventricular)
1. THE STANDARD 12 LEAD ECG

The standard 12-lead electrocardiogram is a representation of the heart's electrical activity recorded from electrodes on the body surface. This section describes the basic components of the ECG and the standard lead system used to record the ECG tracings.

The diagram illustrates ECG waves and intervals as well as standard time and voltage measures on the ECG paper.

ECG WAVES AND INTERVALS: What do they mean?

- **P wave**: *sequential* depolarization of the right and left atria
- **QRS complex**: right and left ventricular depolarization
- **ST-T wave**: ventricular repolarization
- **U wave**: an electrical-mechanical event at beginning of diastole
- **PR interval**: time interval from onset of atrial depolarization (P wave) to onset of ventricular muscle depolarization (QRS complex)
- **QRS duration**: duration of ventricular muscle depolarization (width of the QRS complex)
- **QT interval**: duration of ventricular depolarization and repolarization
- **PP interval**: rate of atrial or sinus cycle
- **RR interval**: rate of ventricular cycle
ORIENTATION OF THE 12-LEAD ECG:

It is important to remember that the 12-lead ECG provides spatial information about the heart’s electrical activity in 3 approximately orthogonal directions (think: X,Y,Z):

- Right – Left (X)
- Superior – Inferior (Y)
- Anterior – Posterior (Z)

Each of the 12 leads represents a particular orientation in space, as indicated below (RA = right arm; LA = left arm, LL = left leg):

- **Bipolar limb leads (frontal plane):**
 - Lead I: RA (- pole) to LA (+ pole) (Right - to - Left direction)
 - Lead II: RA (-) to LL (+) (mostly Superior - to - Inferior direction)
 - Lead III: LA (-) to LL (+) (mostly Superior - to - Inferior direction)

- **Augmented limb leads (frontal plane):**
 - Lead aVR: RA (+) to [LA & LL] (-) (mostly Rightward direction)
 - Lead aVL: LA (+) to [RA & LL] (-) (mostly Leftward direction)
 - Lead aVF: LL (+) to [RA & LA] (-) (Inferior direction)

- **"Unipolar" (+) chest leads (horizontal plane):**
 - Leads V1, V2, V3: (mostly Posterior - to - Anterior direction)
 - Leads V4, V5, V6: (mostly Right - to - Left direction)

Behold: Einthoven's Triangle! Each of the 6 frontal plane or "limb" leads has a negative and positive pole (as indicated by the '+' and '-' signs). It is important to recognize that lead I (and to a lesser extent aVL) are right - to - left in direction. Also, lead aVF (and to a lesser extent leads II and III) are superior - to - inferior in direction. The diagrams on page 6 further illustrate the frontal plane and chest lead hookup.
Note: the actual ECG waveform in each of the 6 limb leads varies from person to person depending on age, body size, gender, frontal plane QRS axis, presence or absence of heart disease, and many other variables. The precordial lead sites are illustrated below.

Precordial lead placement

V1: 4th intercostal space (IS) adjacent to right sternal border

V2: 4th IS adjacent to left sternal border

V3: Halfway between V2 and V4

V4: 5th IS, midclavicular line

V5: horizontal to V4; anterior axillary line

V6: horizontal to V4-5; midaxillary line

(Note: in women, the precordial leads should be placed on the breast surface not under the breast to insure proper lead placement)
2. A "METHOD" OF ECG INTERPRETATION

This "method" is recommended when reading 12-lead ECG's. Like the approach to doing a physical exam, it is important to follow a standardized sequence of steps in order to avoid missing subtle abnormalities in the ECG tracing, some of which may have clinical importance. The 6 major sections in the "method" should be considered in the following order:

1. Measurements
2. Rhythm analysis
3. Conduction analysis
4. Waveform description
5. ECG interpretation
6. Comparison with previous ECG (if available)

1. MEASUREMENTS (usually made in frontal plane leads):
 - Heart rate (state both atrial and ventricular rates, if different)
 - PR interval (from beginning of P to beginning of QRS complex)
 - QRS duration (width of most representative QRS)
 - QT interval (from beginning of QRS to end of T)
 - QRS axis in frontal plane (see "How to Measure QRS Axis" on p 8)

2. RHYTHM ANALYSIS:
 - State the basic rhythm (e.g., "normal sinus rhythm", "atrial fibrillation", etc.)
 - Identify additional rhythm events if present (e.g., "PVC's", "PAC's", etc)
 - Remember that arrhythmias may originate in the atria, AV junction, and ventricles

3. CONDUCTION ANALYSIS:
 - "Normal" conduction implies normal sino-atrial (SA), atrio-ventricular (AV), and intraventricular (IV) conduction.
 - The following conduction abnormalities are to be identified if present:
 - 2nd degree SA block (type I, type II, or uncertain)
 - 1st, 2nd (type I or type II), and 3rd degree AV block
 - IV blocks: bundle branch, fascicular, and nonspecific blocks
 - Exit blocks: these are blocks just distal to ectopic pacemaker site

4. WAVEFORM DESCRIPTION:
 - Carefully analyze each of the12-leads for abnormalities of the waveforms in the order in which they appear: P-waves, QRS complexes, ST segments, T waves, and…. Don't forget the U waves.
 - P waves: are they too wide, too tall, look funny (i.e., are they ectopic), etc.?
 - QRS complexes: look for pathologic Q waves, abnormal voltage, etc.
 - ST segments: look for abnormal ST elevation and/or depression.
 - T waves: look for abnormally inverted T waves or unusually tall T waves.
 - U waves: look for prominent or inverted U waves.

5. ECG INTERPRETATION:
 - This is the conclusion of the above analyses. Interpret the ECG as "Normal", or "Abnormal". Occasionally the term "borderline" is used if unsure about the significance of certain findings or for minor changes. List all abnormalities. Examples of "abnormal" statements are:
- Inferior MI, probably acute
- Old anteroseptal MI
- Left anterior fascicular block (LAFB)
- Left ventricular hypertrophy (LVH)
- Right atrial enlargement (RAE)
- Nonspecific ST-T wave abnormalities
- Specific rhythm abnormalities such as atrial fibrillation

Example of a 12-lead ECG interpretation (see below ECG tracing):

![ECG tracing image]

- HR=67 bpm; PR=0.18 s; QRS=0.09 s; QT=0.40 s; QRS axis = -50° (left axis deviation)

- Normal sinus rhythm; normal SA, AV, and IV conduction; rS waves in leads II, III, aVF (this means small r waves and large S waves)

- Interpretation: Abnormal ECG: 1) Left anterior fascicular block (see p.16)

6. COMPARISON WITH PREVIOUS ECG:

- If there is a previous ECG in the patient's file, the current ECG should be compared with it to see if any significant changes have occurred. These changes may have important implications for clinical management decisions.

HOW TO MEASURE THE QRS AXIS:

INTRODUCTION: The frontal plane QRS axis represents the average direction of ventricular depolarization forces in the frontal plane. As such this measure can inform the ECG reader of changes in the sequence of ventricular activation (e.g., left anterior fascicular block), or it can be an indicator of myocardial damage (e.g., inferior myocardial infarction). Determination of the QRS axis requires knowledge of the direction of the six individual frontal plane ECG leads. Einthoven’s triangle enables us to visualize this.

In the diagram below the normal range is shaded grey (-30° to +90°). In the adult left axis deviation (i.e., superior, leftward arrow) is defined from -30° to -90°, and right axis deviation (i.e., inferior, rightward arrow) is defined from +90° to +180°. From -90° to ±180° is very unusual and may be due to lead placement error.
QRS Axis Determination:

- First find the *isoelectric* lead if there is one; it’s the lead with equal QRS forces in both positive and negative direction (i.e., above and below the baseline). Often this is also the lead with the *smallest* QRS complex.
- The correct QRS axis is *perpendicular* (i.e., right angle or 90 degrees) to that lead’s orientation (see above diagram).
- Since there are two possible perpendiculars for each isoelectric lead, one must chose the one that best fits the direction of the QRS forces in other ECG leads.

<table>
<thead>
<tr>
<th>Isoelectric Lead</th>
<th>More likely axis</th>
<th>Less likely axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>+90</td>
<td>-90</td>
</tr>
<tr>
<td>II</td>
<td>-30</td>
<td>+150</td>
</tr>
<tr>
<td>III</td>
<td>+30</td>
<td>-150</td>
</tr>
<tr>
<td>aVR</td>
<td>-60</td>
<td>+120</td>
</tr>
<tr>
<td>aVL</td>
<td>+60</td>
<td>-120</td>
</tr>
<tr>
<td>aVF</td>
<td>0</td>
<td>+/-180</td>
</tr>
</tbody>
</table>

- If there is no isoelectric lead, there are usually two leads that are nearly isoelectric, and these are always 30° apart on the diagram. Find the perpendiculars for each lead and chose an approximate QRS axis within the 30° range.
- Occasionally each of the 6 frontal plane leads is small and/or isoelectric. An axis cannot be determined and is called *indeterminate*. This is a normal variant.

Examples of QRS Axis Determination:
An axis in the normal range (-30° to +90°):

Analysis
1. Lead aVF is the isoelectric lead (equal forces positive and negative).
2. The two perpendiculars to aVF are 0° and ±180°.
3. Note that Lead I is all positive (i.e., moving to the left).
4. Therefore, of the two choices, the axis has to be 0°.

Left Axis deviation (LAD):
Analysis
1. Lead aVR is the smallest and nearly isoelectric.
2. The two perpendiculars to aVR are -60° and +120°.
3. Note that Leads II and III are mostly negative (i.e., moving away from the + left leg)
4. The axis, therefore, has to be -60° (LAD).

- **Right Axis Deviation (RAD):**

![Diagram of ECG analysis](image)

Analysis
1. Lead aVR is closest to being isoelectric (but slightly more positive than negative)
2. The two perpendiculars to aVR are -60° and +120°.
3. Note that Lead I is mostly negative; lead III is mostly positive.
4. Therefore the axis is close to +120°. Because aVR is slightly more positive, the axis is slightly beyond +120° (i.e., closer to the positive right arm for aVR, ~ +125°)
3. CHARACTERISTICS OF THE NORMAL ECG

It is important to remember that there is a wide range of normal variation in the 12 lead ECG. The following "normal" ECG characteristics, therefore, are not absolute. It takes considerable ECG reading experience to discover all the normal variants. Only by following a structured “Method of ECG Interpretation” (p7) and correlating the various ECG findings with the patient’s particular clinical status will the ECG become a valuable clinical tool.

I. Normal MEASUREMENTS (in adults)
- Heart Rate: 50 - 90 bpm (some ECG readers use 60-100 bpm)
- PR Interval: 0.12 - 0.20s
- QRS Duration: 0.06 - 0.10s
- QT Interval (QTc >0.39s, < 0.45s in men; >0.39s, <0.46s in women)
 Poor Man's Guide to the upper limit of QT: @ 70 bpm, QT ≤ 0.40s; for every 10 bpm increase above 70 bpm subtract 0.02s, and for every 10 bpm decrease below 70 bpm add 0.02s. For example:
 - QT ≤ 0.38 @ 80 bpm
 - QT ≤ 0.42 @ 60 bpm
- Frontal Plane QRS Axis: +90° to -30° (in the adult)

II. Normal RHYTHM: Normal sinus rhythm

III. Normal CONDUCTION: Normal Sino-Atrial (SA), Atrio-Ventricular (AV), and Intraventricular (IV) conduction

IV. Normal WAVEFORM DESCRIPTION:

 - **P Wave**: It is important to remember that the P wave represents the *sequential* activation of the right and left atria, and it is common to see notched or biphasic P waves of right and left atrial activation.
 - P duration < 0.12s
 - P amplitude < 2.5 mm
 - Frontal plane P wave axis: 0° to +75° (i.e., P must be up or + in I and II)
 - May see notched P waves in frontal plane, and biphasic P (+/-) in V1

 - **QRS Complex**: The normal QRS represents the *simultaneous* activation of the right and left ventricles, although most of the QRS waveform is derived from the larger left ventricular musculature.
 - QRS duration ≤ 0.10s
 - QRS amplitude is quite variable from lead to lead and from person to person.
 - Two determinates of QRS voltages are:
 - Size of the ventricular chambers (i.e., the larger the chamber, the larger the voltage; often seen in young aerobic trained athletes)
 - Proximity of chest electrodes to ventricular chamber (the closer, the larger the voltage; seen in tall, thin people)
 - Frontal plane leads:
 - The normal QRS axis range (+90° to -30°) implies that the QRS direction must always be positive (i.e., up going) in leads I and II.
 - Small "septal" q-waves are often seen in leads I and aVL when the QRS axis is to the *left* of +60°, or in leads II, III, aVF when the QRS axis is to the *right* of +60°.
 - Precordial leads:
 - Small r-waves begin in V1 or V2 and increase in size up to V5. The R-V6 is usually smaller than R-V5.
- In reverse, the s-waves begin in V6 or V5 and increase in size up to V2. S-V1 is usually smaller than S-V2.
- The usual transition from $S>R$ in the right precordial leads to $R>S$ in the left precordial leads is V3 or V4.
- Small normal "septal" q-waves may be seen in leads V5 and V6.

ST Segment: In a sense, the term "ST segment" is a misnomer, because a discrete ST segment distinct from the T wave is often not seen. More frequently the ST-T wave is a smooth, continuous waveform beginning with the J-point (end of QRS), slowly rising to the peak of the T and followed by a more rapid descent to the isoelectric baseline or the onset of the U wave. This gives rise to asymmetrical T waves in most leads. The ST segment occurs during Phase 2 (the plateau) of the myocardial cell action potentials. In some normal individuals, particularly women, the T wave looks more symmetrical and a distinct horizontal ST segment is present.

- The ST segment is often elevated above baseline in leads with large S waves (e.g., V2-3), and the normal configuration is **concave upward.** ST segment elevation with concave upward appearance may also be seen in other leads; this is called the **early repolarization pattern,** and is often seen in young, male athletes (see an example of "early repolarization" in leads V4-6 in the ECG below). J-point elevation is often accompanied by a small J-wave in the lateral precordial leads. The physiologic basis for the J-wave is related to transient outward K$^+$ current during phase 1 of the epicardial and mid-myocardial cells, but not present in the subendocardial cells. Prominent J waves are can also be seen in hypothermia (also called Osborn waves)
4. ABNORMALITIES IN THE ECG MEASUREMENTS

1. **PR Interval** (measured from beginning of P to beginning of QRS in the frontal plane)
 - Normal: 0.12 - 0.20s
 - Differential Diagnosis of Short PR: < 0.12s
 - **Preexcitation syndromes**:
 - **WPW (Wolff-Parkinson-White) Syndrome**: An accessory pathway (called the "Kent" bundle) connects the right atrium to the right ventricle (see diagram below) or the left atrium to the left ventricle, and this permits early and slow activation of the ventricles (a *delta* wave) and a short PR interval (see diagram below for example).
 - **LGL (Lown-Ganong-Levine) Syndrome**: An AV nodal bypass track into the His bundle exists, and this permits early activation of the ventricles without a *delta* wave because the ventricular activation sequence is unchanged; the PR interval, however, is shorter.

 ![Diagram of PR Interval](image)

 ![Diagram of WPW Syndrome](image)

 ![Diagram of LGL Syndrome](image)

 - **AV Junctional Rhythms with retrograde atrial activation** *(inverted P waves in II, III, aVF)*: Retrograde P waves may occur *before* the QRS complex (usually with a short PR interval), *within* the QRS complex (i.e., hidden from view), or *after* the QRS complex (i.e., in the ST segment). It all depends upon the relative timing from the junctional focus antegrade into the ventricles vs. retrograde back to the atria.

 - **Ectopic atrial rhythms originating near the AV node** (the PR interval is short because atrial activation originates closer to the AV node; the P wave morphology is different from the sinus P and may appear inverted in some leads); these are sometimes called "coronary sinus rhythms".

 - **Normal variant** *(PR 0.10 - 0.12s)*: seen in kids and adolescents
- **Differential Diagnosis of Prolonged PR: >0.20s**
 - First degree AV block (PR interval is usually constant from beat to beat); possible locations for the conduction delay include:
 - Intra-atrial conduction delay (uncommon)
 - Slowed conduction in AV node (most common site of prolonged PR)
 - Slowed conduction in His bundle (rare)
 - Slowed conduction in one bundle branch (when the contralateral bundle is totally blocked; i.e., 1st degree bundle branch block)
 - Second degree AV block (some P waves do not conduct to ventricles and are not followed by a QRS; PR interval may be normal or prolonged)
 - Type I (Wenckebach): Increasing PR until nonconducted P wave occurs
 - Type II (Mobitz): Fixed PR intervals plus nonconducted P waves
 - **AV dissociation**: Some PR’s may appear prolonged, but the P waves and QRS complexes are dissociated (i.e., not married, but strangers passing in the night).

2. **QRS Duration** (duration of QRS complex in frontal plane):
 - Normal: 0.06 - 0.10s
 - **Differential Diagnosis of Prolonged QRS Duration (>0.10s):**
 - QRS duration 0.10 - 0.12s
 - Incomplete right or left bundle branch block
 - Nonspecific intraventricular conduction delay (IVCD)
 - Some cases of left anterior or left posterior fascicular block
 - QRS duration ≥ 0.12s
 - Complete RBBB or LBBB
 - Nonspecific IVCD
 - Ectopic rhythms originating in the ventricles (e.g., ventricular tachycardia, accelerated ventricular rhythm, pacemaker rhythm)

3. **QT Interval** (measured from beginning of QRS to end of T wave in the frontal plane; corrected QT = QTc = measured QT - sq-root RR in seconds; Bazet’s formula)
 - Normal QT is heart rate dependent (upper limit for QTc = 0.46 sec)
 - Long QT Syndrome: LQTS (based on corrected QTc: QTc ≥ 0.45 sec for males and ≥0.46 sec in females is diagnostic for hereditary LQTS in the absence of other causes of long QT):
 - This abnormality may have important clinical implications since it usually indicates a state of increased vulnerability to malignant ventricular arrhythmias, syncope, and sudden death. The prototype arrhythmia of the Long QT Interval Syndromes (LQTS) is **Torsade-de-pointes**, a polymorphic ventricular tachycardia characterized by varying QRS morphology and amplitude around the isoelectric baseline. Causes of LQTS include the following:
 - Drugs (many antiarrhythmics, tricyclics, phenothiazines, and others)
 - Electrolyte abnormalities (↓ K+, ↓ Ca++, ↓ Mg++)
 - CNS disease (especially subarachnoid hemorrhage, stroke, head trauma)
 - Hereditary LQTS (at least 7 genotypes are now known)
 - Coronary Heart Disease (some post-MI patients)
 - Cardiomyopathy
• **Short QT Syndrome (QT_c < 0.32 sec):** Newly described hereditary disorder with increased risk of sudden arrhythmic death. The QT_c criteria are subject to change.

4. **Frontal Plane QRS Axis**
 - **Normal:** -30 degrees to +90 degrees
 - **Abnormalities in the QRS Axis:**
 - **Left Axis Deviation (LAD):** > -30° (i.e., lead II is mostly 'negative')
 - Left Anterior Fascicular Block (LAFB): rS complex (i.e., small r, big S) in leads II, III, aVF, small q in leads I and/or aVL, and -45 to -90° (see ECG on p 8); in LAFB, the S in lead III is > S in lead II, and the R in aVL is > R in aVR. This differentiates LAFB from other causes of LAD with rS complexes in II, III, aVF (e.g., COPD)
 - Some cases of inferior MI with Qr complex in lead II (making lead II 'negative')
 - Inferior MI + LAFB in same patient (QS or qR complex in II)
 - Some cases of LVH
 - Some cases of LBBB
 - Ostium primum ASD and other endocardial cushion defects
 - Some cases of WPW syndrome (large negative delta wave in lead II)
 - **Right Axis Deviation (RAD):** > +90° (i.e., lead I is mostly 'negative')
 - Left Posterior Fascicular Block (LPFB): rS complex in lead I, qR in leads II, III, aVF (however, must first exclude, on clinical basis, causes of right heart overload; these will also give same ECG picture of LPFB)
 - Many causes of right heart overload and pulmonary hypertension
 - High lateral wall MI with Qr or QS complex in leads I and aVL
 - Some cases of RBBB
 - Some cases of WPW syndrome
 - Children, teenagers, and some young adults
 - **Bizarre QRS axis: +150° to -90° (i.e., lead I and lead II are both negative)**
 - Consider limb lead error (usually right and left arm reversal)
 - Dextrocardia
 - Some cases of complex congenital heart disease (e.g., transposition)
 - Some cases of ventricular tachycardia
5. ECG RHYTHM ABNORMALITIES

THINGS TO CONSIDER WHEN ANALYZING ARRHYTHMIAS:

Arrhythmias may be seen on 12-lead ECGs or on rhythm strips of one or more leads. Some arrhythmias are obvious at first glance and don't require intense analysis. Others, however, are more challenging (and often more fun)! They require detective work, i.e., logical thinking. Rhythm analysis is best understood by considering characteristics of impulse formation (if known) as well as impulse conduction. Here are some things to consider as originally conceptualized by Dr. Alan Lindsay:

How To Think About Arrhythmias
And Conduction Disturbances

- Descriptors of impulse formation (i.e., the pacemaker or region of impulse formation)
 - **Site of origin** - i.e., where does the rhythm originate?
 - Sinus Node (e.g., sinus tachycardia; P waves may be hidden in the preceding T waves at very fast rates)
 - Atria (e.g., PACs, ectopic atrial rhythms, etc.)
 - AV junction (e.g., PJC's and junctional rhythms)
 - Ventricles (e.g., PVCs)
 - **Rate** (i.e., relative to the expected rate for that pacemaker location)
 - Accelerated - faster than expected for that pacemaker site (e.g., accelerated junctional rhythms @ HR's 60-100 bpm)
 - Slower than expected (e.g., marked sinus bradycardia, 38 bpm)
 - Normal (or expected) (e.g., junctional escape rhythm, 45 bpm)
 - **Regularity** of ventricular and/or atrial response
 - Regular (e.g., paroxysmal supraventricular tachycardia - PSVT)
 - Regular irregularity (e.g., ventricular bigeminy)
 - Irregular irregularity (e.g., atrial fibrillation or MAT)
 - Irregular (e.g., multifocal PVCs)
Onset (i.e., how does arrhythmia begin?)
- Active onset (e.g., PAC or PVC, PSVT)
- Passive onset (e.g., ventricular escape beat or rhythm)

Descriptors of impulse conduction (i.e., how does the abnormal rhythm conduct through the heart chambers?)
- Antegrade (forward) vs. retrograde (backward) conduction
- Conduction delays or blocks: i.e., 1st, 2nd (type I or II), 3rd degree blocks
- Sites of potential conduction delay
 - Sino-Atrial (SA) block (one can only recognized 2nd degree SA block on the ECG; i.e., an unexpected failure of a sinus P-wave to appear, resulting in a pause in rhythm)
 - Intra-atrial delay (usually recognized as a widened P wave)
 - AV conduction delays (common)
 - IV blocks (e.g., bundle branch or fascicular blocks)

Now let's continue with some real rhythms.............

I. Supraventricular Arrhythmias
 - Premature Atrial Complexes (PAC's)
 - Occur as single or repetitive events and have unifocal or multifocal origins.
 - The ectopic P wave (often called P') is often hidden in the ST-T wave of the preceding beat. (Dr. Henry Marriott, master ECG teacher and author, likes to say: "Cherchez le P" which, in French, means: "Search for the P" (on the T wave), and it's clearly sexier to search in French!)
 - The P'RI interval can be normal or prolonged if the AV junction is partially refractory at the time the premature atrial impulse enters it.
 - PAC's can have one of three different outcomes depending on the degree of prematurity (i.e., coupling interval from previous P wave), and the preceding cycle length (i.e., RR interval). This is illustrated in the "ladder" diagrams where normal sinus beats are followed by three possible PACs (labeled a,b,c,d in the diagram below):
- **Outcome #1. Nonconducted** (or blocked) PAC; i.e., no QRS complex because the early PAC finds the AV node still refractory to conduction. (see PAC 'a' in the upper diagram labeled 1 (p18), and the nonconducted PAC in ECG shown below (arrow); note that it’s hidden and slightly distorts the ST-T wave)

![ECG Diagram 1](image)

- **Outcome #2. Conducted with aberration:** a PAC conducts to the ventricles but finds one of the 2 bundle branches or one of the LBB fascicles refractory. The resulting QRS is usually wide, and is sometimes called an Ashman beat (see PAC 'b' in the upper diagram, p18, and the V1 rhythm strip below showing a PAC with RBBB aberration; note the PAC in the T wave (arrow).

![ECG Diagram 2](image)

- **Outcome #3. Normal conduction:** i.e., similar to other QRS complexes in that ECG lead. (See PAC 'c' and ‘d’ in the diagram on p18)

![ECG Diagram 3](image)

- In the lower ladder diagram (p18), labeled ‘2’, the cycle length has increased (slower heart rate). This results in increased refractoriness of all the structures in the conduction system. PAC 'b' now can’t get through the AV node and is nonconducted; PAC 'c' is now blocked in the right bundle branch and results in a RBBB QRS complex (aberrant conduction); PAC ‘d’ occurs later and conducts normally. RBBB aberration is generally more common because the right bundle normally has a slightly longer refractory period (RP) than the left bundle. In diseased hearts either bundle branch or a left bundle fascicle may have the longest RP and account for the aberration in QRS waveform.

- **Therefore, the fate of a PAC depends on both 1) the coupling interval from the last P wave, and 2) the preceding cycle length or heart rate.

- The pause after a PAC is usually incomplete; i.e., the PAC actually enters the sinus node and resets its timing, causing the next sinus P to appear earlier than expected. (PVCs, on the other hand, are usually followed by a complete pause because the PVC usually does not perturb the sinus node timing; see ECG below and the diagram on page 27.)
Complete vs Incomplete Pause

- **“Incomplete” pause**: The PP interval surrounding a PAC is less than 2 normal PP intervals (because the PAC reset the sinus timing)
- **“Complete” pause**: The PP interval surrounding the PVC is equal to 2 normal PP intervals because the sinus continued to fire at its normal rate even though it didn’t conduct to the ventricle (see the sinus P hidden in the T wave of the PVC).

Premature Junctional Complexes (PJC’s)
- Similar to PAC’s in clinical implications, but less frequent.
- The PJC focus in the AV junction captures the atria (retrograde) and the ventricles (antegrade). The retrograde P wave may appear **before**, **during**, or **after** the QRS complex; if before, the PR interval is usually short (i.e., <0.12s). The ECG tracing and ladder diagram shown below illustrates a classic PJC with retrograde P waves occurring **after** the QRS.
• **Atrial Fibrillation (A-fib):**

- Atrial activity is poorly defined; may see course or fine baseline undulations (wiggles) or no atrial activity at all. If atrial activity is seen, it resembles the teeth on an *old saw* (when compared to atrial flutter that often resembles a *new saw* or a clean *saw-tooth pattern* especially in leads II, III, and aVF).

- Ventricular response (RR intervals) is **irregularly irregular** and may be **fast** (HR >100 bpm, indicates inadequate rate control), **moderate** (HR = 60-100 bpm), or **slow** (HR <60 bpm, indicates excessive rate control medication, AV node disease, or drug toxicity such as digoxin). Recent studies indicate that resting HR’s <110 bpm may be OK in atrial fibrillation, although not optimal.

- A **regular** ventricular response with A-fib usually indicates high grade or complete AV block with an escape or accelerated ectopic pacemaker originating in the AV junction or ventricles (i.e., consider digoxin toxicity or AV node disease). In the ECG shown below the last 2 QRS complexes are junctional escapes indicating high-grade AV block due (note: the last two RR intervals are the same indicating the escape rate).

- Irregularly-irregular SVT’s may also be seen in atrial flutter with an irregular ventricular response and in multifocal atrial tachycardia (MAT). The differential diagnosis is often hard to make from a single lead rhythm strip; the 12-lead ECG is best for differentiating these three arrhythmias (see p23).
Atrial Flutter (A-flutter):

- Regular atrial activity usually with a clean **saw-tooth** appearance in leads II, III, aVF, and more discrete looking 'P' waves in lead V1. The atrial rate is usually about 300/min, but may be as slow as 150-200/min or as fast as 400-450/min. The above ECG also shows LVH and left anterior fascicular block (LAFB).

- Untreated A-flutter often presents with a 2:1 A-V conduction ratio. This a commonly missed arrhythmia diagnosis because the flutter waves are often difficult to find. Therefore, always **think "atrial flutter with 2:1 block" whenever there is a regular SVT @ approximately 150 bpm!** (You aren’t likely to miss it if you look for it.). In the 12-lead ECG shown above both 2:1 and 4:1 ratios are seen.

- The ventricular response may be 2:1, 3:1 (rare), 4:1, or variable depending upon AV conduction properties. A-flutter with 2:1 block is illustrated in the rhythm strip below; one of the flutter waves occurs at the end of the QRS (pseudo RBBB pattern). Atrial rate =280 bpm, ventricular rate =140 bpm.

- **Ectopic Atrial Tachycardia and Rhythms**
 - Ectopic, discrete looking, unifocal P' waves with atrial rates <250/min (not to be confused with slow atrial flutter).
Ectopic P' waves usually precede QRS complexes with P'R interval < RP' interval (i.e., not to be confused with paroxysmal supraventricular tachycardia with retrograde P waves shortly after the QRS complexes).

The above ECG shows 3 beats of sinus rhythm, a PVC, a sinus beat, and the onset of an ectopic atrial tachycardia (note the different P wave morphology).

Ventricular response may be 1:1 (as above ECG) or with varying degrees of AV block (especially in the setting of digitalis toxicity).

Ectopic atrial rhythms are similar to ectopic atrial tachycardia, but with HR < 100 bpm. The ectopic ‘P’ wave morphology is clearly different from the sinus P wave.

Multifocal Atrial Tachycardia (MAT) and rhythm

- Discrete, multifocal P’ waves occurring at rates of 100-250/min and with varying P'R intervals (one should see at least 3 different P wave morphologies in a given lead).
- Ventricular response is irregularly irregular (i.e., often confused with A-fib).
- May be intermittent, alternating with periods of normal sinus rhythm.
- Seen most often in elderly patients with chronic or acute medical problems such as exacerbation of chronic obstructive pulmonary disease.
- If atrial rate is <100 bpm, call it multifocal atrial rhythm.

Look at lead V1 for the discrete multifocal P waves of MAT, and how other leads look just like a-fibrillation (e.g., leads aVL and V4)
Paroxysmal Supraventricular Tachycardia (PSVT)

- **Basic Considerations**: These arrhythmias are *circus movement* tachycardias that use the mechanism of *reentry*, they are also called *reciprocating* tachycardias. The onset is sudden, usually initiated by a premature beat, and the arrhythmia stops abruptly - which is why they are called *paroxysmal* tachycardias. They are usually narrow-QRS tachycardias unless there is preexisting bundle branch block (BBB) or aberrant ventricular conduction (i.e., rate related BBB). There are several types of PSVT depending on the location of the reentry circuit. The diagram below illustrates the mechanism for AV nodal reentrant tachycardia, the most common form of PSVT.

AV Nodal Reentrant Tachycardia (AVNRT): This is the most common form of PSVT accounting for approximately 75% of all symptomatic PSVTs. The above diagram illustrates the mechanism involving dual AV nodal pathways, *alpha* and *beta*, with different electrical properties. In the diagram *alpha* is a fast pathway but has a long refractory period (RP), and *beta* is a slower pathway but with a shorter RP. During sinus rhythm *alpha* is always used because it is faster, and there is plenty of time between sinus beats for alpha to recover. An early PAC, however, finds *alpha* still refractory and enters the slower *beta* pathway to reach the ventricles. As it slowly traverses *beta*, however, *alpha* recovers allowing retrograde conduction back to the atria. The retrograde P wave (sometimes called an *atrial echo*) is often simultaneous with or just after the QRS and not easily seen on the ECG, but it can reenter the AV junction because of *beta's* short RP and continue the tachycardia.
In the ECG shown above 2 sinus beats are followed by PAC (black arrow) that initiates the onset of PSVT. Retrograde P waves (red arrow) immediately follow each QRS (seen as a little dip at onset of ST segment).

If an early PAC is properly timed, AVNRT results as seen in the diagram on p. 24. Rarely, an atypical form of AVNRT occurs with the retrograde P wave appearing in front of the next QRS (i.e., RP’ interval > 1/2 the RR interval), implying antegrade conduction down the faster alpha, and retrograde conduction up the slower beta pathway.

- **AV Reciprocating Tachycardia (Extranodal bypass pathway):** This is the second most common form of PSVT and is seen in patients with the WPW syndrome. The WPW ECG, seen in the diagram on p. 14, shows a short PR, a delta wave, and somewhat widened QRS.

 - This type of PSVT can also occur in the absence of the typical WPW pattern if the accessory pathway only allows conduction in the retrograde direction (i.e., concealed WPW). Like AVNRT, the onset of PSVT is usually initiated by a PAC that finds the bypass track temporarily refractory, conducts down the slower AV junction into the ventricles, and reenters the atria through the bypass track. In this type of PSVT retrograde P waves usually appear shortly after the QRS in the ST segment (i.e., RP’ < 1/2 RR interval). Rarely the antegrade limb for this PSVT uses the bypass track, and the retrograde limb uses the AV junction; the PSVT then resembles a wide QRS tachycardia and must be differentiated from ventricular tachycardia.

- **Sino-Atrial Reentrant Tachycardia:** This is a rare form of PSVT where the reentrant circuit is between the sinus node and the right atria. The ECG looks just like sinus tachycardia, but the tachycardia is paroxysmal; i.e., it starts and ends abruptly.

- **Junctional Rhythms and Tachycardias**

 - **Junctional Escape Beats:** These are passive, protective beats originating from subsidiary pacemaker cells in the AV junction. The pacemaker's basic firing rate is 40-60 bpm; junctional escapes are programmed to occur whenever the primary pacemaker (i.e., sinus node) defaults or the AV node blocks the atrial impulse from reaching the ventricles. The ECG strip below shows sinus arrhythmia with two junctional escapes (arrows). Incomplete AV dissociation is also seen during the junctional escapes.
- **Junctional Escape Rhythm**: This is a sequence of 3 or more junctional escape beats occurring by default at a rate of 40-60 bpm. There may be AV dissociation, or the atria can be captured retrogradely from the junctional focus.

- **Accelerated Junctional Rhythm**: This is an *active* junctional pacemaker rhythm caused by events that perturb the pacemaker cells in the AV junction (e.g., ischemia, drugs, and electrolyte abnormalities). The rate is 60-100 bpm.

- **Nonparoxysmal Junctional Tachycardia**: This usually begins as an accelerated junctional rhythm but the heart rate gradually increases to >100 bpm. There may be AV dissociation, or retrograde atrial capture may occur. Ischemia (usually from right coronary artery occlusion in inferior MI patients) and digitalis intoxication are the two most common causes.

II. Ventricular Arrhythmias

- **Premature Ventricular Complexes (PVCs)**
 PVCs may be unifocal, multifocal or multiformed. Multifocal PVCs have different sites of origin, which means their coupling intervals (from previous QRS complexes) are usually different. Multiformed PVCs usually have the same coupling intervals (because they originate in the same ectopic site but their conduction through the ventricles differs. Multiformed PVCs are common in digitalis intoxication. PVCs occur as isolated single events or as couplets, triplets, and salvos (4-6 PVCs in a row) also called brief ventricular tachycardias.

In the above diagram 'A' illustrates single PVCs and PVC couplets; 'B' illustrates interpolated PVCs (sandwiched between 2 sinus beats; the PR after the PVC is prolonged because the PVC retrogradely entered the AV junction); 'C' illustrates end-diastolic PVCs with and w/o fusion.
PVCs may occur early in the cycle (R-on-T phenomenon), after the T wave, or late in the cycle - often fusing with the next QRS (called a fusion beat; see 2nd PVC in 'C', p26). R-on-T PVCs may be especially dangerous in acute ischemic settings, because the ventricles are more vulnerable to ventricular tachycardia or fibrillation. In the example below, late (end-diastolic) PVCs are illustrated with varying degrees of fusion. For fusion to occur the sinus P wave must have made it into the ventricles to start the ventricular activation sequence. Before ventricular activation is completed, however, the "late" PVC occurs, and the resultant QRS looks a bit like the normal QRS, and a bit like the PVC; i.e., a fusion QRS (see arrows). Also, see the second PVC with fusion in 'C' on p26.

LeadV1

Parasystolic PVC's with fusions (arrows)

The events following a PVC are of interest. Usually a PVC is followed by a complete compensatory pause, because the sinus node timing is not interrupted by the PVC; one sinus P wave near the PVC can't reach the ventricles because the ventricles are refractory after the PVC; the next sinus P wave occurs on time based on the basic sinus rate. In contrast, PACs are usually followed by an incomplete pause because the PAC can reset the sinus node timing; this enables the next sinus P wave to appear earlier than expected. These concepts are illustrated in the diagram below as well as in the example on the top of p20.
Not all PVCs are followed by a pause. If a PVC occurs early enough (especially when the sinus rate is slow), it may appear “sandwiched” between two normal sinus beats. This is called an interpolated PVC. The sinus P wave following the PVC usually has a longer PR interval because of retrograde concealed conduction by the PVC into the AV junction slowing subsequent conduction of the sinus impulse (see ‘B’ on p26).

Rarely a PVC may retrogradely capture the atrium and reset the sinus node timing resulting in an incomplete pause. Often the retrograde P wave can be seen on the ECG, hiding in the ST-T wave of the PVC.

![Interpolated PVC with ventricular echo (e)](image)

A most unusual post-PVC event occurs when retrograde activation of the AV junction (or atria) re-enters (or comes back to) the ventricles as a ventricular echo. This is illustrated above. The "ladder" diagram under the ECG helps us understand the mechanism. The P wave following the PVC is the sinus P wave, but the PR interval is too short for it to have caused the next QRS. (Remember, the PR interval following an interpolated PVC is usually longer than normal, not shorter!). The PVC reenters the ventricles within the AV junction. Amazing, isn't it?

PVCs usually stick out like "sore thumbs" or funny-looking-beats (FLB's), because they are bizarre in appearance compared to the normal QRS complexes. However, not all premature "sore thumbs" are PVCs. In the example below 2 PACs are seen: #1 has a normal QRS, and #2 has RBBB aberrancy - which looks like a sore thumb. The challenge, therefore, is to recognize sore thumbs for what they are, and that's the next topic for discussion!
ABERRANT VENTRICULAR CONDUCTION

INTRODUCTION

Aberrant ventricular conduction (AVC) is a very common source of confusion in interpreting 12-lead ECGs and rhythm strips. A thorough understanding of its mechanism and recognition is essential to all persons who read ECGs.

Before we can understand aberrant ventricular conduction we must first review how normal conduction of the electrical impulse occurs in the heart (Figure 1). What a magnificent design! Impulses from the fastest center of automaticity (SA node) are transmitted through the atria and over specialized fibers (Bachmann's bundle to the left atrium and three internodal tracts) to the AV node. The AV node provides sufficient conduction delay to allow atrial contraction to contribute to ventricular filling. Following slow AV node conduction high velocity conduction tracts deliver the electrical impulse to the right and left ventricles (through the His bundle, bundle branches and fascicles, and into the Purkinje network). Simultaneous activation of the two ventricles results in a NARROW, NORMAL QRS COMPLEX (0.06-0.1 sec QRS duration). Should conduction delay or block in one of the bundle branches occur then an ABNORMAL WIDE QRS COMPLEX will result. (A delay or block in a fascicle of the left bundle branch will also result in an abnormal QRS that is not necessarily wide but of a different shape (i.e., a change in frontal plane QRS axis) from the person's normal QRS morphology).

Figure 1
Figure 2 below illustrates a basic principle of AVC. AVC is a temporary alteration of QRS morphology when you would have expected a normal QRS complex. Permanent bundle branch block (BBB) is NOT AVC.

In this discussion we will concentrate on AVC through normal bundle branch and fascicular pathways and not consider conduction through accessory pathways (e.g., as in WPW syndrome). The ECG illustrated in Figure 2 from lead V1 shows two normal sinus beats followed by a premature atrial complex (PAC, first arrow). The QRS complex of the PAC is narrow resembling the normal QRS morphology. After an incomplete pause, another sinus beat is followed by a slightly earlier PAC. Now, because of this slightly increased prematurity (and the longer preceding RR cycle), the QRS morphology is abnormal (rsR' morphology of RBBB). If you were not careful you might mistake this wide funny looking beat (FLB) as a PVC and attach a different clinical significance (and therapy). The diagram on p18 also illustrates the different “fates” of PACs. The key features to recognizing AVC in this tracing are:

1. Finding the premature P-wave (P') or Cherchez le P (in French)
2. Recognizing the typical RBBB QRS morphology (rsR' in lead V1)

Lead V1

![ECG tracing](image)

Figure 2

ABERRANT VENTRICULAR CONDUCTION

A term that describes temporary alteration of QRS morphology under conditions where a normal QRS might be expected. The common types are:

1. Through normal conduction pathways:
 - Cycle-length dependent (Ashman phenomenon)
 - Rate-dependent tachycardia or bradycardia
2. Through accessory pathways (e.g., Kent bundle)

As seen below five features or clues help identify AVC of the right bundle branch block variety. It should be emphasized that although RBBB morphology is the commonest form of AVC, LBBB or block of one of its fascicles may also occur, particularly in persons with more advanced left heart disease or those taking cardiovascular drugs. In healthy people the right bundle branch has a slightly longer refractory period than the left bundle at normal heart rates and, therefore, is more likely to be unavailable when an early PAC enters the ventricles. The “second-in-a-row” phenomenon will be illustrated later in this section.

FEATURES FAVORING RBBB ABERRANT CONDUCTION

1. Preceding atrial activity (premature P wave)
2. rSR' or rsR' morphology in lead V1
3. qRs morphology in lead V6
4. Same initial r wave as normal QRS complex (in lead V1)
5. “Second-in-a-row” phenomenon
The **Ashman Phenomenon** is named after the late Dr. Richard Ashman who first described, in 1947, AVC of the RBBB variety in patients with atrial fibrillation. Ashman reasoned, from observing ECG rhythms in patients with a-fib, that the refractory period (during which conducting tissue is recovering and cannot be stimulated) was directly proportional to the cycle length or heart rate. The longer the cycle length (or slower the heart rate) the longer the refractory period is. In Figure 3 a premature stimulus (PS) can be normally conducted if the preceding cycle length is of short or medium duration but will be blocked if the preceding cycle length is long. Ashman observed this in atrial fibrillation when long RR cycles were followed by short RR cycles and the QRS terminating the short RR cycle was wide in duration (looking like RBBB).

Look at the ECG rhythm strips in Figure 3. Simultaneous Lead II and Lead V1 are recorded. The first PAC (first arrow in V1) conducts to the ventricles with a normal QRS because the preceding cycle was of normal or medium length. The second PAC (next arrow) conducts with RBBB (rsR' in V1) because the preceding cycle was **LONGER**. Both PACs have identical coupling intervals from the preceding sinus P wave. Thus, a long cycle-short cycle sequence often leads to AVC. Unfortunately this sequence helps us **UNDERSTAND AVC** but is not **DIAGNOSTIC OF AVC**. PVCs may also occur in a long cycle-short cycle sequence. It is important, therefore, to have other clues to the differential diagnosis of funny looking QRS beats (FLBs).
Years ago Dr. Henry Marriott, a master teacher of electrocardiography and author of many outstanding ECG textbooks offered valuable guidelines regarding aberrant QRS morphologies (especially in lead V1). These morphologies contrasted with the QRS complexes often seen with PVCs and enhanced our ability to diagnose AVC. For example, if the QRS in lead V1 is predominately up-going or positive (Figure 4) the differential diagnosis is between RBBB aberrancy and ventricular ectopy usually originating in the left ventricle. A careful look at each of the 5 QRS morphologies in Figure 4 will identify the “Las Vegas” betting odds of making the right diagnosis.

Figure 4

QRS #1 and #2 are “classic” RBBB morphologies with rsR’ or rSR’ triphasic QRS shapes. When either of these is seen in a V1 premature beat we can be at least 90% certain that they are aberrant RBBB conduction and not ventricular ectopy. Examples #3 and #4 are notched or slurred monophasic R wave QRS complexes. Where’s the notch or slur? Think of rabbit ears. If the notch or slur is on the **downstroke** of the QRS (little right rabbit ear in Example #4), then the odds are almost 100-to-1 that the beat is a ventricular ectopic beat (or PVC). If, on the other hand, the notch or slur is on the **upstroke** of the QRS (little rabbit ear on the left in Example #3), than the odds are 50:50 and not helpful in the differential Dx. Finally if the QRS complex has just a qR configuration (Example #5) than the odds are reasonably high that the beat in question is a ventricular ectopic beat and not AVC. Two exceptions to this last rule (#5) need to be remembered. Some people with normal ECG’s do not have an initial little r-wave in the QRS of lead V1. If RBBB occurs in such a person the QRS morphology in V1 will be a qR instead of an rsR’. Secondly, in a person with a previous anterior or anteroseptal infarction the V1 QRS often has a QS morphology, and RBBB in such a person will also have a qR pattern.

Now consider mostly down-going or negative QRS morphologies in lead V1 (Figure 5). Here the differential diagnosis is between LBBB aberration (Example #1) and right ventricular ectopy (Example #2). Typical LBBB in lead V1 may or may not have a “thin” initial r-wave, but will always have a rapid S-wave downstroke as seen in #1. On the other hand any one of three features illustrated in #2 is great betting odds that the beat in question is ventricular ectopy and not AVC. These three features are: 1) fat little initial r-wave, 2) notch or slur in the downstroke of the S wave, and 3) a 0.06 sec or more delay from the beginning of the QRS to the nadir of the S wave.

Figure 5
Now, let’s look at some real ECG examples of the preceding QRS morphology rules. We will focus on the V1 lead for now since it is the best lead for differentiating RBBB from LBBB, and right ventricular ectopy from left ventricular ectopy.

Figure 6 (above) illustrates two premature funny-looking beats (FLBs) for your consideration. FLB ‘A’ has a small notch on the upstroke of the QRS complex resembling #3 in Figure 4. Remember, that’s only a 50:50 odds for AVC and therefore not helpful in the differentiating it from a PVC. However, if you look carefully at the preceding T wave, you will see that it is more pointed than the other T wave in this V1 rhythm strip. There is very likely a hidden premature P-wave in the T before ‘A’, making the FLB a PAC with RBBB aberrancy. Dr. Marriott likes to say: "Cherchez le P" which is a sexy way to say in French "Search for the P" before the FLB to determine if the FLB is a PAC with AVC. FLB ‘B’, on the other hand, has a small notch or slur on the downstroke of the QRS resembling #4 in Figure 4. That’s almost certainly a PVC.

Alas, into each life some rain must fall! Remember life is not always 100% perfect. In Figure 7, after 2 sinus beats, a bigeminal rhythm develops. The 3 premature FLBs have TYPICAL RBBB MORPHOLOGY (rSR") and yet they are PVCs! How can we tell? They are not preceded by premature P-waves, but are actually followed (look in the ST segment) by the next normal sinus P-wave which cannot conduct because the ventricles are refractory at that time. The next P wave comes on time (complete pause). Well, you can’t win them all!
The ECG in Figure 8 was actually interpreted as "Ventricular bigeminy" in our ECG lab by a tired physician reading late at night. Try to see if you can do better. The first thing to notice is that all the early premature FLBs have RBBB morphology...already a 10:1 odds favoring AVC. Note also that some the T waves of the sinus beats look “funny” – particularly in Leads 1, 2, and V2. They are small, short, and peak too early, a very suspicious signal that they are, indeed, hidden premature P-waves in the T waves (Cherchez-le-P).

The clincher, however, is that the premature beats are followed by INCOMPLETE COMPENSATORY PAUSES. How can you tell? One lead (aVF) has no premature FLBs, so you can measure the exact sinus rate. Taking 2 sinus cycles from this lead (with your calipers), you can now tell in the other leads that the P wave following the FLBs comes earlier than expected suggesting that the sinus cycle was reset by the premature P waves (a common feature of PACs, but not PVCs). The correct diagnosis, therefore, is atrial bigeminy with RBBB aberration of the PACs.

Figure 8

As discussed on p27, the diagram illustrated in Figure 9 helps us understand the difference between a “complete” compensatory pause (characteristic of most PVCs) and an “incomplete” pause (typical of most PACs). The top half of Figure 9 shows (in “ladder” diagram form) three sinus beats and a PAC. The sinus P wave after the PAC comes earlier than expected because the PAC entered the sinus node and reset its timing. In the bottom half of Figure 9 three sinus beats are followed by a PVC. As you can see the sinus cycle is not interrupted, but one sinus beat cannot conduct to the ventricles because the ventricles are refractory due to the PVC. The next P wave comes on time making the pause a complete compensatory pause.
The top ECG strip in Figure 10 (p36) illustrates 2 PACs conducted with AVC. Note how the premature ectopic P-wave peaks and distorts the preceding T-wave (Cherchez-le-P). The first PAC conducts with LBBB aberrancy and the second with RBBB. In the second strip atrial fibrillation is initiated by a PAC with RBBB aberration (note the long preceding RR interval followed by a short coupling interval to the PAC). The aberrantly conducted beat that initiates atrial fibrillation is an example of the "second-in-a-row" phenomenon which is frequently seen in atrial tachyarrhythmias with AVC. It’s the second beat in a sequence of fast beats that is most often conducted with AVC because of the long-short rule (Ashman phenomenon).
In Figure 11 you can see Ashman beats at their finest. RBBB beats in lead V1 follow the long cycle-short cycle sequence. Since the atria are fibrillating, you can’t identify “preceding atrial activity” so you have to presume that all beats are conducted. Note that the 2nd Ashman beat in the top strip is followed by a quicker but narrow QRS beat – the right bundle is now responding to a short cycle-short cycle sequence and behaves normally. Dr. Ashman first published this in 1947!

If you’re ready for some fun, consider the next example illustrated in Figure 12 (p37). This unfortunate man suffered from palpitations and dizziness when he swallowed. What you see is an ectopic atrial tachycardia with intermittent RBBB aberrant conduction. The arrows point to ectopic P-waves firing at nearly 200 bpm. Note how the PR interval gradually gets longer until the 4th ectopic P-wave in the tachycardia fails to conduct (Wenckebach phenomenon). This initiates a pause (longer cycle), and when 1:1 conduction resumes the second and subsequent QRS complexes exhibit upright QRS complexes in the form of atypical RBBB. This has to be a truly cool ECG rhythm strip! The man was told to stop swallowing!
Bundle branch block aberration can occur during a “critical rate” change which means that AVC comes with gradual changes in heart rate and not necessarily with abrupt changes in cycle length as in the Ashman phenomenon. Think of a “tired” but not “dead” bundle branch. This is illustrated in Figure 13 (lead II), an example of rate-dependent or acceleration-dependent AVC. When the sinus cycle, in this instance 71 bpm, is shorter than the refractory period of the left bundle then LBBB ensues. It is almost always the case that as the heart rate slows it takes a slower rate for the LBBB to disappear, as seen in the lower strip.

Figure 13

Figure 14 shows another example of acceleration-dependent RBBB, this time in the setting of atrial fibrillation. Even the “normal” beats have a minor degree of incomplete RBBB (rsr’). At critically short cycles, however, complete RBBB ensues and remains until the rate slows again. You can tell that these are not PVCs and runs of ventricular tachycardia because of the typical RBBB morphology (rsR’ in lead V1) and the irregular RR cycles of atrial fibrillation.
Things can really get scary in the coronary care unit in the setting of acute myocardial infarction. Consider the case illustrated in Figure 15 (lead V1) with intermittent runs of what looks like ventricular tachycardia. Note that the basic rhythm is irregularly irregular indicating atrial fibrillation. The wide QRS complexes are examples of tachycardia-dependent LBBB aberration, not runs of ventricular tachycardia. Note the morphology of the wide beats. Although there is no initial "thin" r-wave, the downstroke of the S wave is very rapid (see #1 in Figure 5, p32).

![Figure 15](image)

Finally we have an example in Figure 16 of a very unusual and perplexing form of AVC --- deacceleration or bradycardia-dependent aberration. Note that the QRS duration is normal at rates above 65 bpm, but all longer RR cycles are terminated by beats with LBBB. What a paradox! You have to be careful not to classify the late beats ventricular escapes, but in this case the QRS morphology of the late beats is classic for LBBB (see #1 in Figure 5) as evidenced by the "thin" r-wave and rapid downstroke of the S-wave. This type of AVC is sometimes called "Phase 4" AVC because it’s during Phase 4 of the action potential that latent pacemakers (in this case located in the left bundle) begin to depolarize. Sinus beats entering the partially depolarized left bundle conduct more slowly and sometimes are nonconducted (resulting in LBBB).

![Figure 16](image)

The rhythm in Figure 16 may be difficult to determine because sinus P-waves are not easily seen in this lead. P-waves were better seen in other leads from this patient. The rhythm was sinus arrhythmia with intermittent 2nd degree AV block.
The ECG strips in Figure 17 summarize important points made in this section. In strip '1' intermittent RBBB is seen with atrial fibrillation. The first two RBBB beats result from an accelerating rate (tachycardia-dependent RBBB) while the later triplet of RBBB beats are a consequence of the Ashman phenomenon (long cycle-short cycle sequence). Strip '2' from the same patient (in sinus rhythm) shows two premature FLB's. The first FLB has a QR configuration similar to #5 in Figure 4 (p32) and is most certainly a PVC as the pause following it is a complete compensatory one. The 2nd FLB has the classic triphasic rsR' morphology of RBBB AVC (#1 in Figure 4). The pause following this beat is incomplete which is expected for PACs.

![Image: MCL 1](image)

Figure 17

Let's look at one more fascinating ECG (Fig 18) with funny-looking beats. On this 12-lead ECG there are 4 PACs (best seen on the V1 rhythm strip at the bottom of the ECG). The arrows point to each of the four PACs (three of which are hidden in the T waves). The first PAC conducts with a qR complex in lead V1 indicating an atypical RBBB (#5 in Figure 4, p32). The lack of an initial 'r'-wave is because the sinus beats in lead V1 lack an initial 'r' wave. Note also that in leads I, II and III the QRS of this first PAC has marked left axis deviation (superior, leftward forces) indicative of left anterior fascicular block AVC. The second PAC hidden in the preceding T wave has a LBBB type of AVC (#1 in Figure 5) with a rapid downslope in the QRS complex. The third PAC (also hidden in the T wave) does not have a QRS complex following it and is, therefore, a nonconducted PAC. Nevertheless it resets the sinus node which accounts for the pause in rhythm. (Remember: the most common cause of an unexpected pause in rhythm is a nonconducted PAC.) The fourth PAC (seen after the T wave) conducts normally because it’s late enough for the conduction pathways to be fully recovered. **This 12-lead ECG is a wonderful example of the three fates of a PAC: 1) normal conduction, 2) aberrant conduction, and 3) nonconduction.** It also illustrates that AVC can occur with different forms of aberrancy including bundle branch as well as fascicular conduction delays.

An unrelated, but interesting finding in Figure 18 is the increased U-wave amplitude in leads V1-3. This is because the first beat in these leads follows the long pause after the nonconducted PAC. U-waves generally increase in amplitude at slower heart rates. Notice how the U-waves for the 2nd beat of V1-3 are somewhat smaller reflecting the shorter cycle length. More about U-waves later.
AVC SUMMARY

The differential diagnosis of FLBs is intellectually challenging and has important clinical implications. This section has provided clues that help distinguish wide QRS complexes that are supraventricular in origin with AVC from ectopic beats of ventricular origin (PVCs and ventricular tachycardia). When looking at single premature FLBs always search for hidden premature P-waves in the ST-T wave of the preceding beat (Cherchez-le-P). Measure with calipers the pause after the FLB to determine if it’s compensatory or not. Remember the lead V1 morphology clues offered in Figures 4 and 5 (p32) that provide the betting odds that a particular beat in question is supraventricular or ventricular in origin. These morphology clues may be the only way to correctly diagnose wide QRS-complex tachycardias.

Don’t be fooled by first impressions. Not all FLBs are ventricular in origin!

The next section focuses on ECG aspects of ventricular tachycardia and the differential diagnosis of wide QRS tachycardias. Other ventricular rhythms are also briefly discussed.
Ventricular Tachycardia

- Descriptors to consider when considering ventricular tachycardia:
 - Sustained (lasting >30 s) vs. nonsustained
 - Monomorphic (uniform morphology) vs. polymorphic vs. Torsades-de-pointes
 - **Torsade-de-pointes**: a polymorphic ventricular tachycardia associated with the long-QT syndromes characterized by phasic variations in the polarity of the QRS complexes around the baseline. Ventricular rate is often >200 bpm and ventricular fibrillation is often a consequence.
 - Presence of AV dissociation (independent atrial activity) vs. retrograde atrial capture
 - Presence of fusion QRS complexes (also called Dressler beats) which occur when supraventricular beats (usually of sinus origin) slip into the ventricles during the ectopic activation sequence.

- **Differential Diagnosis**: just as for single premature funny-looking beats, **not all wide QRS tachycardias are ventricular in origin (they may be supraventricular tachycardias with bundle branch block or WPW preexcitation)**!

- **Differential Diagnosis of Wide QRS Tachycardias**
 - Although this is an ECG tutorial, let's not forget some simple bedside and clinical clues to ventricular tachycardia:
 - Presence of advanced heart disease (e.g., coronary heart disease) favors ventricular tachycardia
 - Cannon 'a' waves in the jugular venous pulse suggests ventricular tachycardia with AV dissociation. Under these circumstances atrial contraction from sinus rhythm may sometimes occur when the tricuspid valve is closed causing retrograde blood flow into the jugular veins (giant 'a' wave).
 - Variable intensity of the S1 heart sound at the apex (mitral closure); again this is seen when there is AV dissociation resulting in varying position of the mitral valve leaflets depending on the timing of atrial and ventricular systole.
 - If the patient is hemodynamically unstable, it's probably ventricular tachycardia and act accordingly!

- **ECG Clues**:
 - **Regularity of the rhythm**: Sustained monomorphic (all QRS's look the same) ventricular tachycardias are usually regular (i.e., equal RR intervals); an irregularly-irregular wide-QRS rhythm suggests atrial fibrillation with aberration or with WPW preexcitation.
 - **A-V Dissociation** strongly suggests ventricular tachycardia! Unfortunately AV dissociation only occurs in approximately 50% of ventricular tachycardias (the other 50% have retrograde atrial capture or "V-A association"). Of the V-techs’ with AV dissociation, it can only be easily recognized if the rate of tachycardia is <150 bpm. Faster heart rates make it difficult to find dissociated P waves.
 - **Fusion beats or captures** often occur when there is AV dissociation and this also strongly suggests a ventricular origin for the wide QRS tachycardia.
 - QRS morphology in lead V1, illustrated in Figures 4 and 5 (p32), is often the **best clue** to the origin, so go back and check out these clues! Also consider a few additional morphology clues:
 - Bizarre frontal-plane QRS axis (i.e. from +150 degrees to -90 degrees or NW quadrant) suggests ventricular tachycardia
QRS morphology identical to previously seen PVCs suggests ventricular tachycardia
If all the QRS complexes from V1 to V6 are in the same direction (either all positive or all negative), ventricular tachycardia is likely
Mostly or all negative QRS morphology in V6 suggests ventricular tachycardia
Especially wide QRS complexes (>0.16s) suggests ventricular tachycardia
Also consider the famous Four-Question Algorithm reported by Brugada et al, Circulation 1991;83:1649:

- **Step 1:** Absence of RS complex in all leads V1-V6? If **Yes:** Dx is ventricular tachycardia!
- **Step 2:** **No:** Is interval from beginning of R wave to nadir of S wave >0.1s in any RS lead? If **Yes:** Dx is ventricular tachycardia!
- **Step 3:** **No:** Are AV dissociation, fusions, or captures seen? If **Yes:** Dx is ventricular tachycardia!
- **Step 4:** **No:** Are there morphology criteria (see p32) for VT present both in leads V1 and V6? If **Yes:** Dx is ventricular tachycardia!
- If **NO:** Diagnosis is supraventricular tachycardia with aberration!

The ECG shown below illustrates several features of typical VT: 1) QRS morphology in lead V1 looks like #4 in Figure 4, p32; the notch is on the downstroke of the R wave; 2) the QRS is mostly negative in lead V6; 3) bizarre frontal plane QRS axis of -180 degrees. This VT is most likely from the left ventricle (note the direction of QRS forces is rightward and anterior; i.e., the QRS originates in the leftward, posterior LV).

Left Ventricular Tachycardia

The ECG illustrated on the top of p43 shows another typical VT, but this time originating in the right ventricle. Note the V1 QRS morphology has all the features of a left ventricular VT origin (see Figure 5, p32) including 1) fat, little R wave; 2) notch on the downstroke or the S-wave; and 3) >0.06 s delay from QRS onset to the nadir (bottom) of the S-wave. The direction of QRS forces is leftward and posterior (i.e., coming from a rightward and anterior RV)
Right ventricular Tachycardia

Accelerated Ventricular Rhythms (see ECG below)

- An “active” ventricular rhythm due to enhanced automaticity of a ventricular pacemaker site (reperfusion after thrombolytic therapy or PCI Rx in acute MI is a common causal factor).
- Ventricular rate can be 60-110 bpm (anything faster would be ventricular tachycardia)
- Sometimes this is called an *isochronic ventricular rhythm* when the ventricular rate is not too different from the basic sinus rate.
- May begin and end with fusion beats (ventricular activation partly due to the normal sinus activation of the ventricles and partly from the ectopic focus).
- Usually benign, short lasting and not requiring any particular therapy.

Lead MCL₁

Isochronic Ventricular rhythm

F = fusion beat

Arrows point at dissociated P waves
Idioventricular Rhythm (a.k.a. Ventricular Escape Rhythm)
- A "passive" wide QRS rhythm that occurs **by default** whenever higher-lever pacemakers in AV junction or sinus node fail to control ventricular activation.
- Escape rates are usually 30-50 bpm.
- Seen most often in complete AV block with AV dissociation or in other bradycardia conditions.
- The QRS morphology is clearly of ventricular origin (see Figures 4 and 5, p32).

Ventricular Parasystole
- Parasystolic PVCs come from protected ectopic pacemaker cells in the ventricles that fire at a fixed rate unrelated to the underlying basic rhythm (usually sinus). As a result they appear as PVCs with varying coupling intervals, and, if late enough in the cardiac cycle they may fuse with the next sinus beat).
- Non-fixed coupled PVCs where the inter-ectopic intervals (i.e., timing between PVCs) are some multiple (i.e., 1x, 2x, 3x, ...etc) of the basic rate of the parasystolic focus
- The PVCs have uniform morphology unless fusion beats occur
- Usually **entrance block** is present around the ectopic focus, which means that the primary rhythm (e.g., sinus rhythm) is unable to enter the ectopic site and reset its timing.
- May also see **exit block**; i.e., the output from the ectopic site may occasionally be blocked (i.e., no PVC when one is expected).
- Fusion beats are common when the ectopic site in the ventricle fires while ventricles are already being activated from sinus pacemaker. In the rhythm below non-fixed coupled PVC's are seen with fusion beats (F). When the PVC occurs late enough in the sinus cycle they begin to **fuse** with the sinus beats.

![Image of ECG rhythm strips showing ventricular parasystole](image)

- Parasystolic rhythms may also originate in the atria (i.e., with non-fixed coupled PAC's) and within the AV junction.

Pacemaker Rhythms
- Pacemakers come in a wide variety of programmable features. The following ECG rhythm strips illustrate the common types of pacing functions.
 - **Atrial pacing**: note small pacemaker spikes before every P wave followed by normal QRS complexes (used mostly for sinus node disease and related bradyarrhythmias)

![Image of ECG rhythm strips showing atrial pacing](image)
• A-V sequential pacing with ventricular pacing (note tiny spike before each QRS) and atrial sensing of normal sinus rhythm (note: pacemaker spikes are sometimes difficult to see):

![Image of ECG strip showing A-V sequential pacing with ventricular pacing]

• A-V sequential pacing with both atrial and ventricular pacing (note pacing spikes before each P wave and each QRS)

![Image of ECG strip showing A-V sequential pacing with both atrial and ventricular pacing]

• Normal functioning ventricular demand pacemaker. Small pacing spikes (arrows) are seen before QRS #1, #3, #4, and #6 representing the paced beats. There is marked sinus bradycardia (that's the reason for the pacemaker), but when P waves are able to conduct they do (see QRS #2 and #5). This is a nice example of incomplete AV dissociation due to sinus slowing where the artificial pacemaker takes over by default. Note also, in this V1 rhythm strip the morphology of the paced beats resemble QRS #2 in Figure 5 (p32) indicative of a RV ectopic pacemaker focus (notched downstroke).

![Image of ECG strip showing normal functioning ventricular demand pacemaker]

6. ECG CONDUCTION ABNORMALITIES

INTRODUCTION: This section considers all disorders of impulse conduction that may occur within the cardiac conduction system (see diagram on page 29). Heart block can occur anywhere in the specialized conduction system beginning with the sino-atrial connections, the AV junction, the bundle branches and fascicles, and ending in the distal ventricular Purkinje fibers. Disorders of conduction may manifest as slowed conduction (1st degree), intermittent conduction failure (2nd degree), or complete conduction failure (3rd degree). In addition, there are two varieties of 2nd degree heart block: Type I (or Wenckebach) (usually in the Ca++ channel cells of the AV node) and Type II (or Mobitz) (usually in the Na+ channel cells of the bundle branches). In Type I (2nd degree) block decremental conduction is seen where the conduction velocity progressively slows beat-by-beat until failure of conduction occurs. This is the form of conduction block in the AV node. Type II block is all or none and is more likely found in the His bundle or in the bundle branches and fascicles. The term exit block is used to identify a conduction delay or failure immediately distal to a pacemaker site. Sino-atrial (SA) block, for example, is an exit block. The following discussion considers conduction disorders in the anatomical sequence that defines the cardiac conduction system; so let's begin.........
SINO-ATRIAL EXIT BLOCK (SA Block):

- **2nd Degree SA Block:** this is the only degree of SA block that can be recognized on the surface ECG (i.e., an intermittent conduction failure between the sinus node and the right atrium). There are two types, although, because of sinus arrhythmia, they may be difficult to differentiate, and it is not clinically important to differentiate.

- **Type I (SA Wenckebach):** the following 3 rules represent the classic rules of Wenckebach which were originally described for Type I 2nd degree AV block. The rules are the result of **decremental conduction** where the increment in conduction delay for each subsequent impulse gets smaller and smaller until conduction failure occurs. For Type I SA block the three rules are:
 1. PP intervals gradually **shorten** until a pause occurs (i.e., the blocked sinus impulse fails to reach the atria; note, the sinus P-wave isn’t seen on the ECG)
 2. The PP interval of the pause is **less than** the two preceding PP intervals
 3. The PP interval following the pause (not seen on this ECG) is **greater than** the PP interval just before the pause

- **Differential Diagnosis:** marked sinus arrhythmia without SA block. The rhythm strip below illustrates SA Wenckebach with a ladder diagram to show the progressive conduction delay between SA node and the atrial P wave. Note the similarity of this rhythm to marked sinus arrhythmia. Note also the timing between the SA firing and the atrial event (P wave) gets longer and longer until conduction failure occurs. Finally, the PP interval of the pause is less than the 2 preceding PP intervals.

![Sino-Atrial Exit Block (type I)](image)

- **Type II 2nd degree SA Block:**
 - PP intervals are fairly constant (unless sinus arrhythmia present) until conduction failure occurs.
 - The pause is approximately **twice** the basic PP interval

![Sino-Atrial Exit Block (Type II)](image)

- **Both** Type I and Type II SA block indicate sinus node disease (intrinsic or drug induced).
ATRIO-VENTRICULAR (AV) BLOCKS:

Possible sites of AV block:
- AV node (most common)
- His bundle (uncommon)
- Bundle branch and fascicular divisions (in presence of already existing bundle branch block)

- 1st Degree AV Block: PR interval > 0.20 sec; all P waves conduct and are followed by QRS complexes.

1st degree AV block (PR = 280 ms)

- 2nd Degree AV Block: The ladder diagrams below illustrate the differences between Type I (Wenckebach) and Type II 2nd degree AV block.

In "classic" Type I (Wenckebach) AV block the PR interval gets longer and longer (by smaller and smaller increments) until a nonconducted P wave occurs. The RR interval of the pause is less than the two preceding RR intervals, and the RR interval after the pause is greater than the RR interval just before the pause. These are the 3 classic rules of Wenckebach (described on p46 for the PP intervals in SA block). In Type II (Mobitz) AV block the PR intervals are constant (for at least 2 consecutive PR intervals) until a nonconducted P wave occurs. The RR interval of the pause is equal to the two preceding RR intervals (assuming a regular sinus rate). In 2:1 AV block one cannot distinguish type I from type II block (because PR is fixed in both cases). There are often other ECG clues to the correct diagnosis in 2:1 AV block:
- Wide QRS complexes (BBB's) suggest type II; narrow QRS complexes suggest type I.
- Prolonged PR intervals (conducted beats) suggest type I (Wenckebach).
• **Type I (Wenckebach) 2nd degree AV block** (note the RR intervals in ms duration illustrating the 3 classic rules):

Lead V1

"Classic Wenckebach"

NOTE: Type I AV block is *almost always* in the AV node itself, which means that the QRS duration is usually narrow, unless there is also a preexisting bundle branch block. Note also the 4:3 and 3:2 groupings of P's and QRS's. Group beating is common in type I 2nd degree AV block.

• **Type II (Mobitz) 2nd degree AV block:** (note: the constant PR for two consecutive PR's before the blocked P wave, and the wide QRS of LBBB)

Lead V1

2nd degree AV block (type II) with LBBB

• Type II AV block there is *almost always* a preexisting bundle branch block (LBBB in the ECG strips above and below), which means that the QRS duration is wide indicating complete block of one bundle The nonconducted P waves are blocked in the other bundle (i.e., a 2nd degree block in the right bundle branch). Also, in Type II block several consecutive P waves may be blocked as illustrated below:
Complete (3rd Degree) AV Block:
- Usually there is complete AV dissociation because the atria and ventricles are each controlled by independent pacemakers.
- Narrow QRS rhythms in 3rd degree AV block suggest a junctional escape focus indicating that the AV block is proximal to the bifurcation of the HIS bundle.
- Wide QRS rhythms suggest a ventricular escape focus (i.e., often called an idioventricular rhythm). This is seen in ECG 'A' below; ECG 'B' shows the treatment for this 3rd degree AV block; i.e., an artificial ventricular pacemaker. The location of the block may be in the AV junction or bilaterally in the bundle branches. Look carefully in 'B' for dissociated P waves that are independent of the pacemaker rhythm.

AV Dissociation (independent rhythms in atria and ventricles):
- Not synonymous with 3rd degree AV block, although AV block is one of the causes.
- May be complete or incomplete. In complete AV dissociation the atria and ventricles are always independent of each other as seen in 3rd degree AV block. In incomplete AV dissociation there is either intermittent retrograde atrial capture from the ventricular focus or antegrade ventricular capture from the atrial focus.
- There are three categories of AV dissociation (categories 1 & 2 are always incomplete AV dissociation):
 1. Slowing of the primary pacemaker (i.e., SA node); a subsidiary escape pacemaker takes over by default. Note that in sinus arrhythmia two junctional beats take over when the sinus rate falls below the junctional escape rate.
2. Acceleration of a subsidiary pacemaker that is slightly faster than the basic sinus rhythm; i.e., takeover by usurpation. In the example below 2 sinus beats are followed by an accelerated (or isochronic) ventricular rhythm (AVR). The first beat of the AVR takes over just before the 3rd sinus P wave would have conducted. During the AVR occasional sinus beats sneak into the ventricles and fusion beats may appear when the sinus beat and AVR beat merge in the ventricles.

3. 2nd or 3rd degree AV block with an escape rhythm from a junctional site or a ventricular site:
 - In the example (below) of complete AV dissociation (3rd degree AV block with a junctional escape pacemaker) the PP intervals are alternating because of ventriculophasic sinus arrhythmia (phasic variations in vagal tone depending on the timing of ventricular contractions effect the sinus rate or PP intervals).

1. What is the diagnosis?
2. Why are the PP intervals alternating?
III. INTRAVENTRICULAR BLOCKS

- **Right Bundle Branch Block (RBBB):**
 - "Complete" RBBB has a QRS duration ≥0.12s (120 ms)
 - Close examination of QRS complex in various leads reveals that the terminal forces (i.e., 2nd half of QRS) are oriented rightward and anterior because the right ventricle is depolarized after the left ventricle in RBBB.
 - Terminal R' wave in lead V1 (usually see rSR' complex) indicating late anterior forces
 - Terminal S waves in leads I, aVL, V6 indicating late rightward forces
 - Terminal R wave in lead aVR also indicating late rightward forces

- The frontal plane QRS axis in RBBB is usually in the normal range (i.e., -30 to +90 degrees). If left axis deviation is present, one must also consider left anterior fascicular block, and if right axis deviation is present, one must consider left posterior fascicular block in addition to the RBBB (i.e., bifascicular block).
- "Incomplete" RBBB has a QRS duration of 0.10 - 0.12s with the same 2nd half QRS features. This is often a normal variant, but could be seen in people with RVH.
- The "normal" ST-T wave morphology in RBBB is oriented opposite to the direction of the late QRS forces or last half of the QRS; i.e., in leads with terminal R or R' forces (e.g., V1) the ST-T should be downwards (negative); in leads with late S forces (e.g., I, V6) the ST-T should be positive. If the ST-T waves are in the same direction as the terminal QRS forces, they should be labeled primary ST-T wave abnormalities because they may be related to other conditions affecting ST-T wave morphology (e.g., ischemia, drug effects, electrolyte abnormalities)

- **Left Bundle Branch Block (LBBB)**
 - "Complete" LBBB has a QRS duration ≥0.12s
 - Close examination of QRS complex (see ECG below) in various leads reveals that the terminal forces (i.e., 2nd half of QRS) are oriented leftward and posterior because the left ventricle is depolarized later after the right ventricle.
 - Late S waves in lead V1 indicating late posterior forces
 - Late R waves in lead I, aVL, V6 indicating late leftward forces.
 - QRS complexes in leads I, aVL, and V6 are monophasic meaning that there should not be initial q-waves or terminal s-waves in these leads (just wide R-waves with or without notches). The presence of q-waves and/or s-waves in these leads may indicate scarred LV areas from old myocardial infarctions.
The "normal" ST-T waves in LBBB should be oriented opposite to the direction of the terminal QRS forces; i.e., in leads with terminal R or R’ forces the ST-T should be downwards (negative) (see I, aVL); in leads with terminal S forces the ST-T should be upwards (positive) (see III, V1-2). If the ST-T waves are in the same direction as the terminal QRS forces, they should be labeled primary ST-T wave abnormalities. In the above ECG the ST-T waves are "normal" for LBBB; i.e., they are secondary to the change in the ventricular depolarization sequence.

"Incomplete" LBBB looks like LBBB but QRS duration is 0.10 - 0.12s, with less ST-T change. This is often the result of long standing LVH.

Left Anterior Fascicular Block (LAFB)..... the most common intraventricular conduction defect
- Left axis deviation in frontal plane, usually -45 to -90 degrees
- rS complexes in leads II, III, aVF (i.e., small initial r, large S)
- S in III > S in II; R in aVL > R in aVR
- Small q-wave in leads I and/or aVL
- R-peak time in lead aVL >0.04s, often with slurred R wave downstroke
- QRS duration usually <0.12s unless coexisting RBBB
- Usually see poor R progression in leads V1-V3 and deeper S waves in leads V5 and V6
- May mimic LVH voltage in lead aVL, and mask LVH voltage in leads V5, V6
- In the above ECG, note -45° QRS axis, rS complexes in II, III, aVF, tiny q-wave in I, aVL, S in III > S in II, R in aVL > R in aVR, and late S waves in leads V5-6. QRS duration is normal, and there is a slight slur to the R wave downstroke in lead aVL. This is classic LAFB!

- Left Posterior Fascicular Block (LPFB). Very rare intraventricular defect!
 - Right axis deviation in the frontal plane (usually > +100°)
 - rS complex in lead I
 - qR complexes in leads II, III, aVF, with R in lead III > R in lead II
 - QRS duration usually <0.12s unless coexisting RBBB
 - Must first exclude (on clinical information or imaging) other causes of right axis deviation such as cor pulmonale, pulmonary heart disease, pulmonary hypertension, etc., because these conditions or right heart strain can result in the identical ECG picture!

- Bifascicular Blocks
 - RBBB plus either LAFB (common) or LPFB (uncommon)
 - Features of RBBB plus frontal plane features of the fascicular block (axis deviation, etc.)
 - This ECG shows classic RBBB (note rSR' in V1) plus LAFB (QRS axis = -60°, rS in II, aVF; and small q in I and aVL).
 - Bifascicular blocks are clinically important precursors of complete (3rd degree) AV block. Before 3rd degree block occurs there may be episodes of 2nd degree AV block (Mobitz) indicating intermittent block in the remaining fascicle. These episodes often cause symptoms of syncope or presyncope.

RBBB + LAFB (bifascicular Block)

- The ECG shown on the next page is classic RBBB and LPFB (bifascicular block) in a patient with chronic heart failure. Note the unusual frontal plane QRS axis of +150° (isoelectric lead II), the rS complex in lead I, and the small q-waves in II, III, aVF. There is rsR’ in V1 indicative of RBBB.
Nonspecific Intraventricular Conduction Defects (IVCD)
- QRS duration >0.10s indicating slowed conduction in the ventricles
- Criteria for specific bundle branch or fascicular blocks are not present
- Causes of nonspecific IVCD's include:
 - Ventricular hypertrophy (especially LVH)
 - Myocardial infarction (so called periinfarction blocks)
 - Drugs, especially class IA and IC antiarrhythmics (e.g., quinidine, flecainide)
 - Severe hyperkalemia

Wolff-Parkinson-White (WPW) Preexcitation
- Although not a true IVCD, this condition causes widening of QRS complex and, therefore, deserves to be considered here.
- The QRS complex represents a fusion between two ventricular activation fronts:
 - Early ventricular activation in the region of the accessory AV pathway (Bundle of Kent). This is illustrated in the diagram on p 14.
 - Ventricular activation through the normal AV junction, bundle branch system
- ECG criteria include all of the following:
 - Short PR interval (<0.12s) due to early ventricular activation
 - Initial slurring of QRS complex (delta wave) representing early ventricular activation into ventricular muscle in the region of the accessory pathway
 - Delta waves, if negative in polarity (see lead III, aVF, and V1 below), may mimic infarct Q waves and result in a false positive diagnosis of myocardial infarction.
 - Prolonged QRS duration (usually >0.10s)
 - Secondary ST-T changes due to the altered ventricular activation sequence
 - QRS morphology, including polarity of delta wave depends on the particular location of the accessory pathway as well as on the relative proportion of the QRS complex that is due to early ventricular activation (i.e., degree of fusion).
 - The accessory pathway enables episodes of PSVT to occur (circus rhythm).
WPW Preexcitation (note short PR and delta waves best seen in I, V5-6)

7. ATRIAL ENLARGEMENT

- **Right Atrial Enlargement (RAE, P-pulmonale, "Viagra P-waves")**
 - P wave amplitude >2.5 mm in II and/or >1.5 mm in V1 (these criteria are not very specific or sensitive)
 - Frontal plane P-wave axis ≥90º (isoelectric in lead I)
 - Better criteria can be derived from the QRS complex; these QRS changes are due to both the high incidence of RVH when RAE is present, and the RV displacement by an enlarged right atrium.
 - QR, Qr, qR, or qRs morphology in lead V1 (in absence of coronary heart disease)
 - QRS voltage in V1 is <5 mm and V2/V1 voltage ratio is >6 (Sensitivity = 50%; Specificity = 90%)
 - Why are these P waves (see lead II below) sometimes called "Viagra P-waves"?

RAE: note also RAD (+110º) and qR complex in V1 indicative of RVH
- **Left Atrial Enlargement (LAE. P-mitrale)**
 - P wave duration ≥0.12s in frontal plane (usually lead II)
 - Notched P wave in limb leads with interpeak duration ≥ 0.04s
 - Terminal P negativity in lead V1 (i.e., "P-terminal force") duration ≥0.04s, depth ≥1 mm.
 - Sensitivity = 50%; Specificity = 90%

![Classic LAE in lead II and V1 (with 1st degree AV block)](image)

- **Bi-Atrial Enlargement (BAE)**
 - Features of both RAE and LAE in same ECG
 - P wave in lead II ≥2.5 mm tall and ≥0.12s in duration
 - Initial positive component of P wave in V1 ≥1.5 mm tall and prominent P-terminal force

![Bi-Atrial Enlargement with LVH](image)
8. VENTRICULAR HYPERTROPHY

Introductory Information:
- The ECG criteria for diagnosing right or left ventricular hypertrophy are very insensitive (i.e., sensitivity ~50%, which means that ~50% of patients with ventricular hypertrophy cannot be recognized by ECG criteria). When in doubt...Get an ECHO! However, the criteria are very specific (i.e., specificity >90%, which means if the criteria are met, it is very likely that ventricular hypertrophy is present).

I. Left Ventricular Hypertrophy (LVH)
- General ECG features include:
 - QRS amplitude: voltage criteria; i.e., tall R-waves in LV leads (I, aVL, V5-6), deep S-waves in RV leads (V1-3).
 - Delayed intrinsicoid deflection in V5 or V6 (i.e., the time from QRS onset to peak R is ≥0.05 sec)
 - Widened QRS/T angle (i.e., left ventricular strain pattern or ST-T waves oriented opposite to QRS direction). This pattern is more common with LVH due to pressure overload (e.g., aortic stenosis, systemic hypertension) rather than volume overload.
 - Leftward shift in frontal plane QRS axis (not necessarily in LAD territory)
 - Evidence for left atrial enlargement (LAE)

ROMHILT-ESTES Criteria for LVH ("definite" ≥5 points; "probable" 4 points)

<table>
<thead>
<tr>
<th>+ECG Criteria</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Criteria (any of):</td>
<td>3 points</td>
</tr>
<tr>
<td>a. R or S in limb leads ≥ 20 mm</td>
<td></td>
</tr>
<tr>
<td>b. S in V1 or V2 ≥ 30 mm</td>
<td></td>
</tr>
<tr>
<td>c. R in V5 or V6 ≥ 30 mm</td>
<td></td>
</tr>
<tr>
<td>ST-T Abnormalities:</td>
<td>1 point</td>
</tr>
<tr>
<td>On digitalis Rx</td>
<td>3 points</td>
</tr>
<tr>
<td>Not on digitalis Rx</td>
<td></td>
</tr>
<tr>
<td>Left Atrial Enlargement in V1</td>
<td>3 points</td>
</tr>
<tr>
<td>Left axis deviation ≥-30º</td>
<td>2 points</td>
</tr>
<tr>
<td>QRS duration ≥0.09 sec</td>
<td>1 point</td>
</tr>
<tr>
<td>Delayed intrinsicoid deflection in V5 or V6 (≥0.05 sec)</td>
<td>1 point</td>
</tr>
</tbody>
</table>

- CORNELL Voltage Criteria for LVH (sensitivity = 22%, specificity = 95%)
 - S in V3 + R in aVL > 28 mm (men)
 - S in V3 + R in aVL > 20 mm (women)
- Other Voltage Criteria for LVH (note that voltage criteria alone can’t make a “definite” ECG diagnosis of LVH)
 - Limb-lead voltage criteria:
 - R in aVL ≥11 mm or, if left axis deviation, R in aVL ≥18 mm
 - R in I + S in III >25 mm
 - R in aVF >20 mm
 - S in aVR > 14 mm
 - Chest-lead voltage criteria:
 - S in V1 + R in V5 or V6 ≥ 35 mm
 - R + S in any leads > 45 mm
Example 1: (Limb-lead Voltage Criteria; e.g., R in aVL $>$ 11 mm, or R in I + S in III $>$ 25 mm; note downsloping ST segment depression in leads I and aVL).

Example 2: (ROMHILT-ESTES Criteria: 3 points for precordial lead voltage, 3 points for ST-T changes; also LAE (possibly bi-atrial enlargement). This pattern is classic for LVH due to severe LV pressure overload as seen in aortic stenosis.)
II. Right Ventricular Hypertrophy

- General ECG features include:
 - Right axis deviation (>90º) in frontal plane
 - Tall R-waves in RV leads (V1-2); deep S-waves in LV leads (V5-6)
 - Slight increase in QRS duration
 - ST-T changes directed opposite to QRS direction (i.e., wide QRS/T angle)
 - May see incomplete RBBB pattern or qR pattern in V1
 - Evidence of right atrial enlargement (RAE)

- Specific ECG features (assumes normal calibration of 1 mV = 10 mm):
 - Any one or more of the following (if QRS duration <0.12 sec):
 - Right axis deviation (>90 degrees) in presence of disease capable of causing RVH
 - R in aVR > 5 mm, or
 - R in aVR > Q in aVR
 - Any one of the following in lead V1:
 - R/S ratio > 1 and negative T wave
 - qR pattern (see Example #1 below)
 - R > 7 mm, or S < 2 mm, or rSR' with R' >10 mm
 - Other chest lead criteria:
 - R in V1 + S in V5 (or V6) 10 mm
 - R/S ratio in V1 >1 or S/R ratio in V6 >1
 - R in V5 or V6 < 5 mm
 - S in V5 or V6 > 7 mm
 - ST segment depression and T wave inversion in right precordial leads are usually seen in severe RVH such as in pulmonary stenosis and pulmonary hypertension.

Example #1: RVH in patient with mitral stenosis. Note qR pattern in V1, marked RAD (+140º), large P-terminal force in V1 (LAE), slight increased QRS duration (incomplete RBBB), deep S wave in V5-6.
Example #2: 18 yr. old patient with primary pulmonary hypertension. Note: marked RAD (+140°), R in V1 > 7mm, prominent anterior forces in V1-3, increased P amplitude of RAE, and the typical RV strain pattern in precordial leads (ST depression, T wave inversion).

Example #3: RVH in patient with an atrial septal defect. Note the incomplete RBBB pattern in V1 (rsR’), and the slight RAD (+105°).

III. Biventricular Hypertrophy (difficult ECG diagnosis to make)
- In the presence of LAE any one of the following suggests this diagnosis:
 - R/S ratio in V5 or V6 < 1
 - S in V5 or V6 > 6 mm
 - RAD (>90°)
- Other suggestive ECG findings:
 - Criteria for LVH and RVH both met or LVH criteria met and RAD or RAE present
9. MYOCARDIAL INFARCTION

Introduction to ECG Recognition of Acute Coronary Syndrome (ACS)

- The ECG changes of ACS are the result of a sudden reduction of coronary blood flow to a region of ventricular myocardium supplied by a coronary artery with a ruptured atherosclerotic plaque and intracoronary thrombus formation. Depending on how quickly the patient gets to the hospital for definitive treatment (usually percutaneous revascularization or thrombolytic Rx) myocardial necrosis (infarction) may or may not occur. The diagram below shows four possible ECG outcomes of myocardial ischemia in the setting of an acute coronary syndrome. On the left side no myocardial necrosis occurs but there is either subendocardial ischemia manifested by reversible ST segment depression or transmural ischemia manifested by reversible ST segment elevation. On the right are two types of myocardial infarction, one manifested by ST segment elevation (STEMI) and one manifested by no ST segment elevation (NonSTEMI). Either of these can evolve into Q-wave or non-Q-wave MI’s. Because Q waves may not appear initially, early treatment decisions are based on the presence or absence of ST segment elevation, and if revascularization is accomplished quickly Q-waves may never appear (“time is muscle” says the interventional cardiologist).

The following discussion will focus on ECG changes during the evolution of a STEMI

- All MI’s involve the left ventricular myocardium. In the setting of a proximal right coronary artery occlusion, however, there may also be a component of right ventricular infarction as well. Right sided chest leads are usually needed to recognize RV MI.
• In general, the more leads of the 12-lead ECG with MI changes (Q waves and/or ST elevation), the larger the infarct size and the worse the prognosis (i.e., more damage).

• The left anterior descending coronary artery (LAD) and its branches supply the anterior and anterolateral walls of the left ventricle and the anterior two-thirds of the septum. The left circumflex coronary artery (LCx) and its branches supply the posterolateral wall of the left ventricle. The right coronary artery (RCA) supplies the right ventricle, as well as the inferior (diaphragmatic) and posterior-lateral walls of the left ventricle, and the posterior third of the septum. The RCA also gives off the AV nodal coronary artery in 85-90% of individuals; in the remaining 10-15%, this artery is a branch of the LCX.

• The usual ECG evolution of a STEMI with Q-waves is illustrated in the diagram below. Not all of the 6 patterns may be seen; the time from onset of MI to the final pattern is quite variable and is related to the size of MI, the rapidity of reperfusion (if any), and the location of the MI. (This example might be seen in lead II during an acute inferior MI)
 A. Normal ECG prior to the onset of plaque rupture
 B. Hyperacute T wave changes - increased T wave amplitude and width; QT prolongs; may also see some ST segment elevation
 C. Marked ST elevation with hyperacute T wave changes ("tombstone" pattern)
 D. Pathologic Q waves appear (necrosis), ST elevation decreases, T waves begin to invert (this is also called the "fully evolved" phase)
 E. Pathologic Q waves, T wave inversion (necrosis and fibrosis)
 F. Pathologic Q waves, upright T waves (fibrosis)
 (G). Q waves may get smaller or disappear with time

I. Inferior MI Family of STEMI's (Q-wave MI's); includes inferior, true posterior, and right ventricular MI's

• Inferior MI
 • Pathologic Q waves and evolving ST-T changes in leads II, III, aVF
 • Q waves (if they appear) are usually largest in lead III, next largest in lead aVF, and smallest in lead II. Q wave \(\geq 30\)ms in aVF is diagnostic.
Example #1: Acute inferior MI injury pattern. Note hyperacute T waves with ST elevation in II, III, aVF (ST↑ in III > ST↑ in II suggests RCA occlusion); reciprocal ST depression is seen in I, and aVL. ST depression in V1-3 represents true posterior injury pattern and not a reciprocal change (see true posterior MI patterns below). The V4 and V5 electrode sites in this ECG are interchanged (this is an ECG technician error; it doesn’t alter the diagnosis however).

Example #2: Old inferior MI (note largest Q in lead III, next largest in aVF, and smallest in lead II). Axis = -50° (LAD); T wave inversion is also present in leads II, III, and aVF

- **True posterior MI**: ECG changes are seen in precordial leads V1-3, but are the mirror image of an anteroseptal MI (because the posterior wall is behind the anterior wall)
 - Increased R wave amplitude and/or duration ≥40 ms in V1-2 (i.e., a "pathologic R wave" is the mirror image of a pathologic Q on the posterior wall – seen in V8 and V9)
 - R/S ratio in V1 or V2 >1 (i.e., prominent anterior forces; need to R/O RVH)
 - Hyperacute ST-T wave changes: i.e., ST depression and large, inverted T waves in V1-3
 - Late normalization of ST-T with symmetrical upright T waves in V1 to V3
 - Often seen with an inferior wall MI (i.e., "infero-posterior MI")
Example #3: Acute infero-posterior MI (note tall R waves V1-3, marked ST depression V1-3, and inferior ST elevation in II, III, aVF)

Example #4: Old infero-posterior MI: Note tall, wide pathologic R in V1-3 (this is a Q wave equivalent), upright T waves, and inferior Q waves with residual ST segment elevation

Differential Diagnosis of Tall R waves in V1 or V2 (and narrow QRS complexes):
- True posterior myocardial infarction (see above)
- Right ventricular hypertrophy (p59)
- Left septal fascicular block (a controversial diagnosis)
- Normal variant
- Misplaced precordial leads
Example #5: Acute "posterior MI" secondary to occlusion of the left circumflex coronary artery. This is a 15-lead ECG with the addition of right precordial V4R (to diagnose RV MI), and posterior leads V8 and V9 placed on the back horizontal to leads V4-6. In this ECG one can see ST elevation in V8-9, but not significantly noted in the standard leads (except, perhaps, I and aVL). Note also the ST depression V1-6 indicative of posterior transmural injury. The absence of ST elevation in V4R rules out a right ventricular MI (see Example #6 below).

- **Right Ventricular MI** (only seen with proximal right coronary occlusion; i.e., with inferior family of left ventricular MI's)
 - ECG findings usually require additional leads on right chest (V1R to V6R, analogous to the left chest lead locations, but on the right chest)
 - Criteria: ST elevation, ≥1mm, in right chest leads, especially V4R (see below)

Example #6: Acute inferior MI with right-sided ECG leads showing marked ST segment elevation (tombstone pattern) in V3R, V4R, V5R, V6R. ST↑ in III > ST↑ in II suggests RCA occlusion. (note V1R and V2R are the same as regular leads V2 and V1 respectively)
II. Anterior Family of STEMI's; includes anteroseptal, anterior, anterolateral, and high lateral

- Anteroseptal MI
 - Q, QS, or qrS complexes in leads V1-V3 (V4)
 - Evolving ST-T changes

Example #7: Hyperacute anteroseptal MI; marked ST elevation in V1-3 before Q waves developed (note convex-up ST elevation in V1-3)

Example #8: Fully evolved anteroseptal MI (note QS waves in V1-2, qrS complex in V3, plus ST-T wave changes)
- **Anterior MI** (similar changes, but usually V1 is spared; if V4-6 involved call it "anterolateral"; if changes also in leads I and aVL it’s a “high-lateral” MI.

Example 9: Acute **Anterolateral** injury; note ST elevation V3-6. Possible inferior MI also present of uncertain age.

![ECG example of anterolateral MI](image1)

Example #10: Anterolateral MI with high lateral changes as well. Note Q’s V2-6 plus Q’s in leads I and aVL. Axis = +120° (RAD)

![ECG example of anterolateral MI with high lateral changes](image2)

Comment: The precise identification of MI locations on the ECG is evolving as new heart imaging (e.g., MRI) better defines the ventricular anatomy. New terminology has been suggested (see *Circulation* 2006;114:1755). While not universally accepted, the following "new" Q-wave MI patterns have been defined for left ventricular segments seen on MRI imaging:

- **Septal MI:** Q (or QS) waves in V1-2
- **Mid-Anterior MI:** Q waves in aVL, sometimes in lead I, V2, V3, but not in V5-6.
- **Apical-Anterior MI**: Q waves in V3, V4, and sometimes in V5-6. No Q waves in I, aVL
- **Extensive Anterior MI**: Combination of above 3 locations.
- **Lateral MI**: Prominent R waves in V1-2 (this replaces the true posterior MI location; MRI imaging of the left ventricle shows no posterior wall). Q waves may also be present in I, aVL, V5-6.
- **Inferor MI**: Q waves in II, III, aVF, but without prominent R waves in V1-2

(It remains to be seen whether or not this new terminology of infarct location will become accepted in the ECG literature of the future)

Example #11: Acute Left Main Coronary Occlusion (pay attention!):

The ECG illustrated above is a tragic case of missed acute left main coronary occlusion. It was missed diagnosed as a non-STEMI because of the absence of typical ST segment elevation in 2 or more contiguous ECG leads. Instead of proceeding to emergent coronary intervention, the patient was treated with the non-STEMI protocol in the CCU for 12 hrs until a disastrous cardiac arrest occurred. The ECG findings of left main coronary occlusion seen in the above ECG include:
- ST segment elevation in aVR > any ST elevation in V1
- ST segment depression in 7 or more leads of the 12-lead ECG
- This ECG is considered a STEMI equivalent and should be Rx’ed emergently.

Similar ECG findings may occur in acute MI due to severe 3-vessel coronary artery disease.
III. MI with Bundle Branch Block
- MI + Right Bundle Branch Block
 - Usually easy to recognize because the appearance of Q waves and ST-T changes in the appropriate leads are not altered by the RBBB

Example #12: Inferior MI + RBBB (note Q's in II, III, aVF and typical rSR' in lead V1)

Example #13: Extensive anterior MI with RBBB + LAFB; note pathologic Q's in leads V1-V5, terminal fat R wave in V1-4, fat S wave in V6 of RBBB). Axis = -80° (rS in II, III, and aVF: indicative of left anterior fascicular block; RBBB+LAFB indicates bifascicular block!
MI + Left Bundle Branch Block

- Often a difficult ECG diagnosis because in LBBB the right ventricle is activated first and left ventricular infarct Q waves may not appear at the beginning of the QRS complex (unless the septum is involved).

- Suggested ECG features, not all of which are specific for MI include:
 - Q waves of any size in two or more of leads I, aVL, V5, or V6 (See ECG #15 on p71: one of the most reliable signs and probably indicates septal infarction, because the septum is activated early from the right ventricular side in LBBB)
 - Reversal of the usual R wave progression in precordial leads
 - Notching of the downstroke of the S wave in precordial leads to the right of the transition zone (i.e., before QRS changes from a predominate S wave complex to a predominate R wave complex); this may be a Q-wave equivalent appearing after the onset of the QRS.
 - Notching of the upstroke of the S wave in precordial leads to the right of the transition zone (another Q-wave equivalent; see V4 in example #15)).
 - rSR' complex in leads I, V5 or V6 (the S is a Q-wave equivalent occurring in the middle of the QRS complex)
 - RS complex in V5-6 rather than the usual monophasic R waves seen in uncomplicated LBBB; (the S is a Q-wave equivalent).
 - "Primary" ST-T wave changes (i.e., ST-T changes in the same direction as the QRS complex rather than the usual "secondary" ST-T changes seen in uncomplicated LBBB); these changes may reflect an acute, evolving MI.
 - Exaggerated ST deviation in same direction as the usual LBBB ST changes in LBBB (see leads V1 and V2 in Example #14)

Example #14: Acute anterior MI with LBBB. Note convex-upwards ST elevation in V1-3 with exaggerated ST depression in V-6.
Example #15: Old MI (probable septal location) with LBBB. Remember LBBB without MI should have monophasic R waves in I, aVL, V6). This ECG has abnormal q waves in I, aVL, V5-6 suggesting a septal MI location. Note also the notching on the upslope of S wave (arrow) in V4 (“sign of Cabrera”) and the PVC couplet.

IV. Non-ST elevation MI (NSTEMI)
- ECG changes may be minimal, or may show only T wave inversion, or may show ST segment depression with or without T wave inversion.
- Although it is tempting to localize the non-Q MI by the particular leads showing ST-T changes, this is probably only valid for the ST segment elevation MI’s (STEMI)
- Evolving ST-T changes may include any of the following patterns:
 - ST segment depression in 2 or more leads (this carries the worse prognosis)
 - Symmetrical T wave inversion only (this carries a better prognosis)
 - Combinations of above changes
 - OR the ECG may remain normal or only show minimal change (this has the best prognosis)

V. The Pseudoinfarcts
- These are ECG conditions that mimic myocardial infarction either by simulating pathologic Q or QS waves or mimicking the typical ST-T changes of acute MI.
 - WPW preexcitation (negative) delta wave may mimic pathologic Q waves; see the ECG on p72. This is an interesting ECG with intermittent WPW preexcitation. The WPW pattern is seen on the first half of the ECG, but disappeared when the precordial leads V1-6 were recorded. Note the deep Q and QS waves in leads II, III, and aVF. These are not really Q waves but negative (down-going) delta waves. Note also the slurred upstroke of the QRS complex in leads I, and the first half of the V5 rhythm strip (bottom channel). In the 2nd half of the ECG tracing the “pseudo” Q waves in the lead II rhythm strip disappear and a QR wave QRS complex appears indicating the return of normal conduction through the ventricles. Also the delta wave in lead V5 goes away on the bottom channel during the 2nd half of the ECG. Finally, the PR interval is also shorter during the 1st half of the ECG when preexcitation is occurring.
Intermittent WPW Preexcitation (1st half of ECG) with pseudo Q-waves II, III, aVF

- IHSS (septal hypertrophy may make normal septal Q waves "fatter" thereby mimicking pathologic Q waves)
- LVH (may have QS pattern or poor R wave progression in leads V1-3)
- RVH (tall R waves in V1 or V2 may mimic true posterior MI)
- Complete or incomplete LBBB (QS waves or poor R wave progression in leads V1-3)
- Pneumothorax (loss of right precordial R waves)
- Pulmonary emphysema and cor pulmonale (loss of R waves V1-3 and/or inferior Q waves with right axis deviation)
- Left anterior fascicular block (may see small q-waves in anterior chest leads)
- Acute pericarditis (the ST segment elevation may mimic acute transmural injury)
- Central nervous system disease (may mimic non-Q wave MI by causing diffuse ST-T wave changes)

VI. Miscellaneous Abnormalities of the QRS Complex in the differential diagnosis of MI:

- **Poor R Wave Progression** – arbitrarily defined as small, or absent r-waves in leads V1-3 (R <2mm, plus R/S ratio V4 <1). Differential diagnosis includes:
 - Normal variant (if the rest of the ECG is normal; frequently seen in women due to inaccurate precordial lead placement
 - LVH (look for voltage criteria and ST-T changes of LV "strain")
 - Complete or incomplete LBBB (also see increased QRS duration)
 - Left anterior fascicular block (should see LAD ≥-45º in frontal plane)
 - Anterior or anteroseptal MI (look for evolving ST-T changes)
 - Emphysema and COPD (look for R/S ratio in V5-6 <1)
 - Diffuse infiltrative or myopathic processes
 - WPW preexcitation (look for delta waves and short PR)

- **Prominent Anterior Forces** - defined as R/S ratio >1 in V1 or V2. Differential diagnosis includes:
 - Normal variant (if the ECG is otherwise normal)
• True posterior MI (look for additional evidence of inferior MI; see Example 4, p64)
• RVH (should see RAD in frontal plane and/or P-pulmonale; see Example 2, p60)
• Complete or incomplete RBBB (look for rSR' in V1)
• WPW preexcitation (look for delta waves, short PR)
• Left septal fascicular block (not a universally accepted entity – but strong evidence exists for this)

10. ST Segment Abnormalities

General Introduction to ST, T, and U wave abnormalities
• Basic Concept: the specificity of ST-T and U wave abnormalities is determined more by the clinical circumstances in which the ECG changes are found than by the particular changes themselves. Thus the term, nonspecific ST-T wave abnormalities, is frequently used for ST segment depression and T wave abnormalities when the clinical data are not available to correlate with the ECG findings. This does not mean that the ECG changes are unimportant! **It is the responsibility of the clinician providing care for the patient to ascertain the importance of the ECG findings.**

• Factors affecting the ST-T and U wave configuration include:
 - Intrinsic myocardial disease (e.g., myocarditis, ischemia, infarction, infiltrative or myopathic processes)
 - Drugs (e.g., digoxin, antiarrhythmics, tricyclics, and many others)
 - Electrolyte abnormalities of potassium, magnesium, and calcium
 - Neurogenic factors (e.g., stroke, CNS hemorrhage, head trauma, brain tumor, etc.)
 - Metabolic factors (e.g., hypoglycemia, hyperventilation)
 - Atrial repolarization (e.g., at fast heart rates the end of the atrial T wave may pull down the beginning of the ST segment; this is not a true ST segment change)
 - Genetic abnormalities of channel membrane proteins, called channelopathies. Examples include hereditary long QT syndromes, and Brugada Syndrome.

• Secondary ST-T wave changes are the result of alterations in the sequence of ventricular depolarization (e.g., bundle branch blocks, WPW preexcitation and ventricular ectopic beats or paced beats). These changes are not abnormalities; they are appropriate in the setting of altered ventricular activation sequence. ST-T wave changes are called primary if they are independent of the sequence of ventricular depolarization (e.g., ischemic ST changes, electrolyte abnormalities, drug effects, etc.). These changes are repolarization abnormalities.

I. Differential Diagnosis of ST Segment Elevation
• Normal Variant "Early Repolarization Pattern" (ST segments are usually concave upwards, ending with symmetrical, large, upright T waves)
 - "Early Repolarization": note high take off of the ST segment in leads V4-6; ST segment elevation in V2-3 is generally seen in most normal ECG's; the ST elevation in V2-6 is concave upwards, another characteristic of this normal variant. This pattern is especially common in young, male athletes.

• Ischemic Heart Disease (usually convex upwards, or straightened ST segment); this is the result of transmural myocardial ischemia after total coronary occlusion.
 - Example: Acute anterior transmural injury – anteroseptal MI
Note: Persistent ST elevation long after an acute MI suggests failure of reperfusion, a ventricular aneurysm, or an akinetic scar resulting from a healed MI. Reversible ST elevation may also be seen as a manifestation of Prinzmetal's (or "variant") angina which is caused by transient coronary artery spasm. Coronary spasm can also occur as a result of cocaine overdose. ST elevation during exercise ECG testing suggests an extremely tight coronary artery stenosis or transient spasm (transmural ischemia).

Acute Pericarditis
- Concave upwards ST elevation in most leads except aVR
- No reciprocal ST segment depression (except in lead aVR)
- Unlike "early repolarization", T waves are usually lower in amplitude, and heart rate is usually increased.
- May see PR segment depression, a manifestation of atrial injury

Example: Post-op pericarditis; note diffuse, concave-upwards ST elevation, HR 100 bpm, PR segment depression in leads I, V2, V3; PR segment elevation is seen in aVR.
The ECG changes of acute pericarditis evolve over time through the following stages (not all stages are seen in every patient):

- **Stage I**: concave upwards ST segment elevation in most leads with reciprocal ST segment depression in aVR. During this stage there is also atrial injury represented by PR segment depression in many leads and PR segment elevation in aVR (see above example, p74).
- **Stage II**: resolution of ST segment and PR segment changes
- **Stage III**: diffuse T wave inversion in many leads
- **Stage IV**: resolution of the T wave changes or persistent T wave inversion (chronic pericarditis)

- **Hypothermia**: In this interesting condition the onset of the ST segment (called the J-point) turns into a wider J-wave as a result of increased transmural dispersion of ventricular repolarization. The ECG below illustrates these prominent “J-Waves” following most of the QRS complexes (also called 'Osborn' waves). This homeless person was found comatose in December outside in a park. Note also atrial fibrillation.

![ECG Image]

Hypothermia and Atrial Fibrillation

- Other Causes or ST segment elevation:
 - Left ventricular hypertrophy (seen in right precordial leads with large S-waves)
 - Left bundle branch block (seen in right precordial leads with large S-waves)
 - Advanced hyperkalemia (seen in multiple ECG leads with widened QRS complexes)

II. Differential Diagnosis of ST Segment Depression

- **Subendocardial ischemia**: Example: During Exercise ECG stress testing
Subendocardial ischemia is the most common expression of ischemia during exercise ECG testing and is manifested as horizontal or downsloping ST depression mainly in the lateral precordial leads. The progression of these changes is illustrated in the figures on p76. Transmural ischemia is manifested by ST elevation. The leads showing the ST elevation often point to a critical lesion (or spasm) in a particular coronary artery.
The above diagram illustrates possible ischemic ECG changes during treadmill exercise testing as seen in lead V5; this is the best lead for identifying subendocardial ischemia as demonstrated by the sequence C-D-E.

A. Normal V5 ECG at rest before exercise (note normal ST-T and U waves)
B. J-junctional ST depression due to increased HR (this is not an ischemic change)
C. Early subendocardial ischemia (more J-junctional depression, slowly upsloping ST)
D. Horizontal ST segment depression (≥1mm, horizontal, lasting ≥80 ms)
E. Downsloping ST depression (usually seen during recovery from exercise as HR slows)
F. ST segment elevation (this is a manifestation of transmural ischemia)
G. U-wave inversion (a very unusual manifestation of ischemia suggesting LAD or L-main disease). When seen, it occurs during recovery when HR slows down.

Other causes of ST segment depression:
- Pseudo-ST-depression (wandering baseline artifact due to poor skin-electrode contact)
- Physiologic J-junctional depression with sinus tachycardia (most likely due to atrial repolarization and not a true ST change as seen in ‘B’ in above figure)
- Hyperventilation-induced ST segment depression (seen with anxiety)
- Non ST segment myocardial infarction (Non-STEMI)
- Reciprocal ST depression in STEMI (e.g., ST depression in I, aVL during an acute inferior STEMI)
- True posterior MI (ST depression in V1-3 reflects ST elevation in leads V8-9)
- “Strain” pattern of RVH (right precordial leads V1-3) and LVH (left precordial leads V5-6)
- Drugs (e.g., digoxin)
- Electrolyte abnormalities (e.g., hypokalemia)
- Neurogenic effects (in CNS disease)

11. T Wave Abnormalities

INTRODUCTION: The T wave is the most labile wave in the ECG. T wave changes including low-amplitude T waves and abnormally inverted T waves may be the result of many cardiac and non-cardiac conditions. The normal T wave is usually in the same direction as the QRS except in the right precordial leads (see V1-3 below). The T wave in V1 may or may not be inverted, but usually from V2 on (in the adult person) the T waves are upright. Also, the normal T wave is asymmetric with the ascending half moving more slowly than the descending half. In the normal ECG, illustrated below, the T waves are always upright in leads I, II, V3-6, and always inverted in lead aVR. T waves in other leads are variable depending on the QRS axis and the age of the patient. Children and adolescents may have inverted T waves from V1 to V3.

![Normal ECG](image)
I. Differential Diagnosis of T Wave Inversion

- During the evolution of STEMI and non-STEMI MI’s. The precordial leads shown below illustrate the evolved stage of an anterior MI after resolution of ST segment elevation:

- Subendocardial myocardial ischemia (e.g., during recovery from exercise testing)
- Subacute or healed pericarditis (see stages of pericarditis, p74)
- Myocarditis
- Myocardial contusion (from trauma; e.g., steering wheel accident)
- CNS disease (neurogenic T wave changes) with long QT intervals (especially after a subarachnoid hemorrhage; see ECG below with giant negative T waves and QT prolongation)
- Idiopathic apical hypertrophy (a rare form of hypertrophic cardiomyopathy with giant negative T waves)
- Mitral valve prolapse (some cases)

II. QT Interval Prolongation (see p15 for causes):

Example: Hereditary long QT syndrome (note the unusual bifid, humped T waves in V2-3)

II. Miscellaneous ST-T Wave Change

- Epsilon waves in *Arrhythmogenic Right Ventricular Cardiomyopathy* (ARVC); these hard to see tiny squiggles appear in the right precordial leads (arrows)
ARVC is a rare cause of sudden cardiac death in athletes. The disease usually involves the right ventricular outflow tract; normal myocardium is replaced by fatty infiltration and fibrosis. ECG manifestations include the very difficult to recognize *epsilon wave* as well as right precordial T wave inversions (see example, p79).

- Other causes of sudden cardiac death in young athletes include:
 - Hypertrophic cardiomyopathy (the most common cause in the U.S.). ECG findings in this disease include diffuse T wave inversions, prolonged QT intervals, and left ventricular hypertrophy.
 - Congenital coronary artery anomalies (e.g., anomalous origin of the left coronary artery from the right coronary cusp). Sudden death is due to ischemic events.
 - Coronary artery disease
 - Myocarditis
 - Hereditary channelopathies (long QT, short QT, Brugada syndrome, et al)

- Electrolyte abnormalities
 - Hypercalcemia (abbreviated ST segment with short QT intervals)
 - Hypocalcemia and hypomagnesaemia (long ST segment with prolonged QT intervals)
 - Hyperkalemia (peaked T waves, prolonged QRS duration; see ECG below)
 - Hypokalemia (usual triad of: ST depression, low T waves, and large U waves)
 - Digoxin effect: scooped ST depression, low amplitude T waves, short QT intervals.

Hyperkalemia: tall, pointed, narrow T waves (avoid sitting on them!)
- **Brugada** type ECG (seen in the *hereditary* Brugada syndrome and the *acquired* Brugada sign brought out by Na⁺ channel blockers such as flecainide); this is an unusual pattern of right precordial ST segment elevation with or without T wave inversion. An example is seen in the ECG below. Note that leads V1 and V2 might be confused with RBBB, but the QRS duration is not prolonged in other leads. Like the long QT syndrome, there is increased incidence of malignant arrhythmias and sudden cardiac death in this condition.

The ECG below illustrates resolution of the **acquired Brugada sign** due to an overdose of a tricyclic antidepressant, a Na⁺ channel blocker (by Day 4 the ECG has returned to normal).
12. U Wave Abnormalities

INTRODUCTION: The U wave is the only remaining enigma of the ECG, and probably not for long. The origin of the normal U wave is still in question, but many experts correlate **abnormal U waves** with electrophysiologic events called "afterdepolarizations" in the ventricular myocardium. These afterdepolarizations can be a source of arrhythmias caused by "triggered automaticity" including **torsade de pointes** seen in patients with long QT syndromes. The **normal U wave** has the same polarity as the T wave and is usually less than one-third the amplitude of the T wave. Normal U waves are usually best seen in the mid-precordial leads especially V2 and V3. The normal U wave is asymmetric with the ascending limb moving more rapidly than the descending limb (just the opposite of the normal T wave).

- Normal U waves are illustrated in the precordial leads below. Look closely after the T waves in V2 and V3 and note the small upward deflections. That's looking at 'U'!!

![ECG Image]

Differential Diagnosis of U Wave Abnormalities

- Prominent upright U waves
- Sinus bradycardia accentuates normal U waves (this is normal)
- Hypokalemia (remember the triad of ST segment depression, low amplitude T waves, and prominent upright U waves)
- Various drugs including antiarrhythmics (e.g., sotolol)
- LVH (may see prominent upright or inverted U waves in left precordial leads)
- CNS disease and other causes of long QT (T-U fusion waves); see ECG below.
- Negative or "inverted" U waves
 - Ischemic heart disease (often indicating left main or LAD disease)
 - Myocardial infarction (in leads with pathologic Q waves)
 - During episode of acute ischemia (angina or exercise-induced ischemia; see diagram on p75)
 - Post extrasystolic in patients with coronary heart disease
 - During coronary artery spasm (Prinzmetal's angina)
 - Left ventricular hypertrophy

- Nonischemic causes: some cases of LVH or RVH (usually in leads with prominent R waves)
 - Some patients with LQTS (see below: Lead V6 shows giant negative TU fusion wave in patient with LQTS; a prominent upright U wave is seen in Lead V1)
Special Thanks:
I would like to thank Intermountain Healthcare for its support in allowing me to create this educational material to improve patient care.